

COURSE DESCRIPTION

1. Program Information

1.1 University “Alexandru Ioan Cuza” University of Iaşi

1.2 Faculty Computer Science

1.3 Department Computer Science

1.4 Study Domain Computer Science

1.5 Study Cycle Master

1.6 Study Program / Qualification Computational Optimization

2. Course Information

2.1 Course Name Software Quality

2.2 Course Teacher Lect. dr. Vlad Rădulescu

2.3 Seminary Teacher Lect. dr. Vlad Rădulescu

2.4 Study Year I-II 2.5 Semester I 2.6 Evaluation E 2.7 Course Status
*
 OP

* OB – Compulsory / OP – Optional

3. Total estimated hours (hours per semester and didactic activities)

3.1 Hours per week 4 in which: 3.2 course 2 3.3 seminary/laboratory 2

3.4 Hours in curriculum 56 in which: 3.5 course 28 3.6 seminary/laboratory 28

Time Distribution hours
Manual study, Course support, Bibliography, and others 38

Supplementary Documentation in library, in electronic forums, and on the field 38

Seminaries/laboratories preparation, homeworks, reports, portfolios and essays 38

Tutoring -

Evaluation 4

Other activities (consultations per student) 10

3.7 Total hours individual study 114

3.8 Total hours per semester 184

3.9 Credits 8

4. Preconditions (if necessary)

4.1 Of Curriculum -

4.2 Of Skills -

5. Conditions (if necessary)

5.1 For Course Operation -

5.2 For Seminary/Laboratory
Operation

-

8. General Description

8.1 Course Teaching Methods
Observations
(hours and bibliographic
references)

1 Introduction
exposition, debate, case
studies, problem solving

-

2 Program testing
exposition, debate, case
studies, problem solving

-

3
Defects in software systems. Code
inspection

exposition, debate, case
studies, problem solving

-

4 Risk analysis. Test planning
exposition, debate, case
studies, problem solving

-

5
Testing levels: unit testing, integration
testing, system testing, acceptance
testing

exposition, debate, case
studies, problem solving

-

6. Specific Skills Acquired

P
ro

fe
s

s
io

n
a
l

S
k
il
ls

 C1. The identification of proper methodologies for developing software systems.
C2. The identification of proper models and methods for solving real-life problems.
C3. The development of dedicated informatic projects.

T
ra

n
s
v

e
rs

a
l

S
k
il
ls

 CT1. The use of efficient methods and techniques for learning, acquiring information,
research and development of the capabilities to capitalize the knowledge, to adapt to the
requirements of a dinamic society and to communicate in Romanian and in an international
language.

7. Course Objectives (from the grid of specific skills acquired)

7
.1

 G
e
n

e
ra

l

O
b

je
c
ti

v
e

s

Understanding the main elements that define the quality of software systems.
Getting acquainted with the methods used in program testing and analysis.

7
.2

 S
p

e
c
if

ic
 O

b
je

c
ti

v
e
s

Upon the successful completion of this course, the students will be able to:
 Describe the main concepts related to software testing, risk analysis, test planning, software

quality measurement.
 Use software testing tools.
 Analyze software projects and the risk of defect arrival.
 Plan the testing of software systems.
 Decide the actions to be taken for improving the development process of a software project.

6 Extreme testing. Regressive testing
exposition, debate, case
studies, problem solving

-

7 Assertions. Debugging
exposition, debate, case
studies, problem solving

-

8 Recapitulation
exposition, debate, case
studies, problem solving

-

9-10
Measuring the software quality. Metrics
for software quality. Defect removal

exposition, debate, case
studies, problem solving

-

11 Software reliability models
exposition, debate, case
studies, problem solving

-

12 Process metrics for testing
exposition, debate, case
studies, problem solving

-

13 Complexity metrics
exposition, debate, case
studies, problem solving

-

14 Recapitulation
exposition, debate, case
studies, problem solving

-

Bibliography

Main references:
R. D. Craig, S. P. Jaskiel, Systematic Software Testing, SQE Publishing, 2007.
S. H. Kahn, Metrics and Models in Software Quality Engineering, Second Edition, Addison-Wesley, 2003.
Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley, 2000.

Supplementary references:
G. J. Myers, The Art of Software Testing, Second Edition, Wiley, 2004.

8.2 Seminary / Laboratory Teaching methods
Observations
(hours and bibliographic
references)

1 Programe testing; possible defects
debate, case studies, problem
solving

-

2 Equivalence classes
debate, case studies, problem
solving

-

3-5
Unit testing; usign the NUnit program
and the NMock library

debate, case studies, problem
solving

-

6 Load testing. Stress testing
debate, case studies, problem
solving

-

7 Using assertions in the testing process
debate, case studies, problem
solving

-

8 Recapitulation
debate, case studies, problem
solving

-

9 Project work - specifications
debate, case studies, problem
solving

-

10-11 Project work - application development
debate, case studies, problem
solving

-

12 Project work - unit testing
debate, case studies, problem
solving

-

13 Project work - assertions
debate, case studies, problem
solving

-

14 Project work - documentation
debate, case studies, problem
solving

-

Bibliography
G. J. Myers, The Art of Software Testing, Second Edition, Wiley, 2004.

9. Course content synchronization with the expectations of the community representatives,
professional associations and employers from the program domain

The development of large software projects is an inherently error-prone activity. That is why knowing
the testing techniques and methodologies is mandatory for the project managers. Beyond error
tracking, the efficiency of program writing must be assessed and appropriate measures must be
taken to improve the process; to achieve that, risk analysis and statistical models must be used in
order to predict/improve the evolution of software projects.

10. Evaluation

Activity Type 10.1 Evaluation criteria 10.2 Evaluation methods

10.3 The weight
of each
evaluation form
(%)

10.4 Course
understanding the concepts
related to software quality

written test 50%

10.5 Seminary/
Laboratory

the ability to handle the
development of large
software projects

project 50%

10.6 Minimal performance standards

- understanding the phases of a software project and the corresponding testing phases
- the ability to develop a test plan for a simple software system
- the ability to use testing techniques and tools (unit testing, assertions, code inspection)

