
A Comparison of Static Analysis Tools for Vulnerability Detection in C/C++ Code

Andrei Arusoaie∗, S, tefan Ciobâcă∗, Vlad Crăciun∗†, Dragos, Gavrilut,†, Dorel Lucanu∗
∗Faculty of Computer Science, Alexandru Ioan Cuza University, Iaşi

Email: arusoaie.andrei,stefan.ciobaca,dorel.lucanu@info.uaic.ro
†Bitdefender, Iaşi

Email: vcraciun,dgavrilut@bitdefender.com

Abstract—We describe work that is part of a research
project on static code analysis between the Alexandru Ioan
Cuza University and Bitdefender. The goal of the project
is to develop customized static analysis tools for detecting
potential vulnerabilities in C/C++ code.

We have so far benchmarked several existing static
analysis tools for C/C++ against the Toyota ITC test suite
in order to determine which tools are best suited to our
purpose. We discuss and compare several quality indicators
such as precision, recall and running time of the tools. We
analyze which tools perform best for various categories of
potential vulnerabilities such as buffer overflows, integer
overflow, etc.

1. Introduction

This paper describes part of a joint research project
between the Alexandru Ioan Cuza University and Bitde-
fender, which started in October 2016. The main goal
of the project is to develop a custom static analysis
tool/framework for C/C++ code that is able to detect
possible vulnerabilities such as buffer overflows and use
of unsanitised data from untrusted sources. The project
aims to improve the code analysis process in terms of
productivity and ease of use, while taking into account the
increasing complexity of the malware detection process.
Therefore the customised solution for code analysis must:

• be tailored towards the kind of vulnerabilities the
company is interested in;

• be fast, in order to increase the productivity of the
developers;

• be extensible, in the sense that it should be easy to
adapt or to configure it for new classes of vulnera-
bilities;

• report only defects that represent possible vulnerabil-
ities the company is interested in, together with their
context.

There are several well known problems that can occur
when using static code analysis tools:

• the output of such tools often include a lot of spurious
warnings/errors, which cannot always be switched off
through tool configuration options. These make the
output difficult to read and it is very probable that
developers stop paying attention to it;

• the execution of tools takes a long time, which could
slow down developer productivity;

• the static analysis abstractions used by the tools
are not a good match for the abstractions used by

the developers, which decreases the precision of the
tools;

• if several tools are used, then it is likely that each of
them uses a different vulnerability taxonomy;

• the vulnerability taxonomy used by the company is
different from that used by the tool.

All these issues are in fact challenges for the design
of a customized static code analysis tool.

This paper reports our experience on comparing ex-
isting static code analysis tools on a set of vulnerabilties
that BitDefender is interested in.

We first searched the literature for such a comparison.
We found several survey papers on static code analysis
tools and several benchmarks for bug detection tools.
However, such papers usually concentrate on program-
ming languages other than C/C++ (e.g. [1]), they do not
focus on vulnerability detection (e.g. [2], [3]), they only
concentrate on subsets of vulnerabilities (e.g. [4]) which
do not include all vulnerabilities that we are interested
in, or the associated artifacts do not seem to be available
anymore (e.g. [5]).

Therefore we started to develop our own framework
for running and comparing static analysis tools. Since the
main language used by the company is C/C++, our focus
is on the tools that support C/C++. There are several
challenges that we address for this comparison:

1) how to classify vulnerabilities; 2) how to assign
vulnerabilities to the appropriate class; 3) how to decide
if two vulnerabilities detected by two different tools are
in fact same; 4) what kind of statistics are helpful or
useful; 5) finding illustrative annotated test benchmarks;
6) finding a unitary reporting system for all tools;

For classifying vulnerabilities we use the Common
Weakness Enumeration (CWETM) list [6], which was
created by the MITRE Corporation to be used as a
common taxonomy for software weaknesses. The class
of weaknesses covered by the CWE list is extensive
enough, as it includes flaws, faults, bugs, vulnerabilities,
and other errors in software implementation, code, design,
or architecture. We focus on vulnerabilities discussed in
Section 5.

The CWE list is organized in a hierarchical fashion,
each weakness having an ID. For example, the weakness
with ID 190 (CWE-190: Integer Overflow or Wraparound)
is a child of weakness CWE-682: Incorrect Calculation,
which itself is part of several categories, including CWE-
189: Numeric Errors and CWE-738: CERT C Secure
Coding Section 04 - Integers (INT). The CWE hierachy
is therefore organized as a DAG.

We choose to benchmark the static analyis tools
against the Toyota ITC test suite [7], which is part of the
Software Assurance Reference Dataset (SARD) [8]. SARD
is itself a component of the Software Assurance Metrics
And Tool Evaluation (SAMATE) project, developed by the
National Institute of Standards and Technology (NIST).
We choose this benchmark since it has references to
the CWE taxonomy and covers a large class of C/C++
vulnerabilities.

The Toyota ITC test suite contains several test cases.
Each test case consists of a set of C/C++ files that ex-
pose various weaknesses. The testcases cover a significant
number of weaknesses from the CWE list. The testsuite
contains an XML manifest file, which documents the
weaknesses of each test case. For each weakness, the
manifest file contains the file name, the line number and
the CWE id of the weakness. We show a fragment of
the manifest file in the next section. Additionally, some
C/C++ files are annotated with comments stating that a
particular line should not be reported as a vulnerability.
Altogether, there are 1915 vulnerabilities spread over 101
test cases.

Our framework runs a set of static analyzers over all
test cases. For each test case, we automatically analyze
whether the corresponding vulnerabilities in the manifest
file are detected by the static analysis tools and we produce
a report with various statistics such as the precision (the
ratio between the true positives and the total number of
defects reported by the tool), recall (the ratio between
the true positives and the total number of defects in the
source code) and running time for each tool and category
of vulnerabilities. The correspondence between the defects
reported by the tool and the defects in the ITC test suite
is performed based on the line number in the source
code. This allows us to handle static analysis tools that
use different weakness taxonomies, with a small risk of
misclassifying some defects.

In order to increase our confidence in the results, we
inspect manually all results for two tools that are of inter-
est to us. The manual inspection shows that our automatic
classification is very precise, but it also reveals several
bugs in the Toyota ITC test suite and a few imprecisions
in the static analysis tools that we describe in this paper
and that we will report to the developers.

The current version of our framework runs the fol-
lowing static analysis tools: Code Sonar [9], Clang Static
Analyzer [10] (core and alpha checkers), CppCheck [11],
Facebook Infer [12], Splint [13] (standard and weak). The
core checkers of Clang are the stable checkers enabled by
default in the tool. The alpha checkers are unstable and
can be enabled using command line options. Splint has
a standard mode, with all the warnings enabled, and a
weak mode where the checking parameters are set such
that it reports less warnings. It is possible to easily add
other static code analysis tools and run them on the
same benchmarks, but the output needs manual inspection,
which could be costly.

Section 2 contains an overview the main tools and
approaches related to our work. Section 3 presents the
current status of our framework. Section 4 shows statistics
that we generate with the proposed framework, which
automatically performs the correspondence between the
defects reported by the tool and the defects in the ITC

test suite. Section 5 presents the results of the manual
inspection of the result for two of the tools that are of
particular interest to us. Section 6 points out the main
features that we will investigate and implement in future
work.

Disclaimer. Certain instruments, software tools and their
organisations are identified in this paper to specify the
exposition adequately. Such identification is not intended
to imply recommendation or to imply that the instruments
and software tools are necessarily the best available for the
purpose.

2. Related Work

We are interested in automated tools for detecting
vulnerabilities in software written in C/C++. There are
several techinques for such automated analyses, including
(bounded) model checking, abstract interpretation, static
analysis, runtime monitoring, or combinations thereof, and
several commercial and open source tools that implement
such techniques. We rule out techniques such as deductive
verification since they cannot be easily automated [14].

There are several tools that partially fit our needs,
but we concentrate only of the most well known. One
of the oldest static analysis tools is Lint; one of its
succesors, Splint [13], can check C programs for security
vulnerabilities and some other mistakes. The open source
CppCheck [11] features several analyses for C++ code
such as bounds checking.

On the commercial side, we have looked at several
tools. Astrée [15] is a static analysis tool based on abstract
interpretation [16] for a subset of the C language that
aims to be sound and which is especially useful for find-
ing buffer overflows and/or undefined results. Grammat-
ech produces the tool CodeSonar [9], an interprocedural
analyzer that can find buffer overflows, memory leaks
and others. Coverity (and in particular Coverity Security
Advisor) [17] provides similar capabilities. PVS-Studio
is a static analyzer featuring incremental analysis which
integrates with Visual Studio. Of the commercial tools
above, it is currently not possible to obtain an evaluation
version of Coverity.

Of the open source tools, Clang [10] features a
static analyzer based on interprocedural data-flow analy-
sis. Frama-C [18] is a framework for C program analysis
that is sound and which features several plugins for static
analysis or verification. One such plugin is the builtin
value analysis plugin, which can be used to test for buffer
overflows, pointer aliasing, etc. It is possible to use Frama-
C to analyze C++ code with the early stage framac-clang
plugin, which works by translating C++ into C, using the
clang frontend.

Several tools are available from Microsoft, including
the /analyze command-line option in Visual C++ (how-
ever, it requires code annotations to work effectively).
Microsoft’s Static Driver Verifier/SLAM Project [19] im-
plements counter-example guided abstraction refinement
for checking API usage in C code, and has been used to
verify several correctness properties in drivers. HP pro-
vides Fortify for C/C++. An interesting approach is taken
by Infer [12] from Facebook, which uses bi-abduction
to perform interprocedural analysis. Static analysis tools

such as Cppdepend [20] concentrate on code metrics and
visualizations.

The Toyota ITC benchmark [21] provides a set of C
programs annotated with defects such as static and/or dy-
namic buffer overflow/underflow, dereferencing of NULL
pointers, etc. The article [7] compares CodeSonar (Gram-
maTech) and Code Prover/Bug Finder (MathWorks). The
BugBench benchmark paper [3] compares three runtime
analysis tools against a 17 open-source C/C++ appli-
cations with known bugs. Other runtime bug finding
tools, such as RV-Match [22], were benchmarked against
the Toyota ITC tests. The OWASP project contains the
OWASP benchmark [23], which is a test suite with vul-
nerabilities in Java code.

The BegBunch [5] benchmark consists of several bug
kernels (small pieces of code designed to capture the
essence of bugs occuring in real code). The bug kernels
were extracted by the BegBunch team from real applica-
tions such as OpenSolaris and MySql, but also contains
some bug kernels from BugBench [3] or Zitser [4]. Un-
fortunately, the benchmark does not seem to be available
for download anymore. The main differences to BegBunch
are that we concentrate on vulnerabilities (and not general
bugs) and we produce reports that are more fine grained.
Moreover, we manually inspect the output of the tools
in order to increase our confidence in the reports. The
manual inspection reveals some bugs in the Toyota ITC
benchmark and some imprecisions in some of the static
analysis tools.

3. Our Framework

One of the tasks in our joint research project between
Bitdefender and the Alexandru Ioan Cuza University is to
compare the existing static code analysis tools. Besides
the ad-hoc comparisons that we can find on the internet,
there are also several research papers that address the same
topic. Most of them do comparisons using various criteria
(e.g., comparing the performance of the tools based on
annotated code vs. tools that do not need annotations [24],
detection ratio [25], etc.). Others (e.g., [26], [27]) include
extensive studies on the functionality provided by the
tools, or exhaustive analyses and statistics over large test
suites. Although these results are indeed useful to us, we
have to consider different criteria driven by the needs of
the company. An example would be to find which anal-
ysis tools perform better when it comes about detecting
exploitable vulnerabilities (e.g., buffer overflow), and, at
the same time, finish the analysis faster. Thus, we need a
comparison of the existing static analysis tools.

To achieve this, we developed a framework that can be
configured to run various static analysers over the Toyota
ITC test suite. It takes as input a list of static analysis
tools and a test suite and runs the tools on the test suite;
it outputs the results in human readable format.

To avoid reinventing the wheel, we opted for the
SARD standard format for test suites. Each test suite
includes source files and an XML manifest which contains
information about the test cases. A sample manifest entry
for the 199231 test case (chosen arbitrarily) is shown
below, where we use “...” to omit irrelevant details:

<testcase id="199231"

type="Source Code"
instruction="gcc -Wall ... " ...>

<description>
...
Defect Code to identify bit shift errors

</description>
...

<file path="000/199/231/bit_shift_main.c"
language="C" ... />

<file path="000/199/231/bit_shift.c"
language="C" ... >

<flaw line="236"
name="CWE-189: Numeric Errors"/>

...
</file>
...

</testcase>

The relevant lines from bit_shift.c are:

233: void bit_shift_017 ()
234: {
235: int ret;
236: ret = 1 << 32; /*ERROR:Bit shift error*/
237: sink = ret;
238: }

For each test case, the manifest specifies the files
involved, the command line to use for compiling the test
case, a short description, and some other information1.
Also, for each file, the manifest includes the numbers
of the lines containing errors/warnings, together with ref-
erences to the CWE list. This information is useful for
classifying errors (e.g., to determine which of them are
exploitable vulnerabilities).

Our framework processes each test case as follows:
firstly, it generates a temporary directory containing all the
required source files; secondly, it runs the static analyzers
over the test case files and stores the results into internal
data structures; thirdly, it traverses the data structures and
outputs a report.

Since the analyzers use different formats for their
outputs, our tool converts the outputs of the analyzers into
a unique format. In order to add a new analyzer, such a
conversion component must be added to the framework.

By default, the tool generates a report containing
statistics for each test-case and each CWE vulnerability:
the total number of errors included in the manifest file,
the number of errors from the manifest file detected by
each analyzer, and the number of errors not included in
the manifest file but detected by each tool (these “extra”
errors could be false positives or simply true errors that
are not specified in the manifest file).

4. Experiments

To exhibit the functionality of the tool, we have cho-
sen for comparison the following static analysis tools:
CppCheck, two versions of the Clang Static Analyzer
(one with only the core checkers enabled and one with
the less mature alpha checkers), GrammaTech CodeSonar,
two versions of Splint (weak mode and standard mode)
and Facebook Infer. We are currently in the process of
integrating other static analysis tools as well.

1. Readers can consult the manifest file for the test suite available
at [21] for details.

4.1. Summary

We summarize the results in Table 1. For each an-
alyzer, we list the tool version, the number of detected
errors, the number of “extra” errors, and the analysis time
for the entire testsuite (101 testcases). Currently, we do
not weigh errors by importance.

The total number of bugs included in the manifest is
1915. The second line in Table 1 contains the number
of bugs detected by the corresponding tool. To decide
whether a particular weakness is detected by a tool, we
currently rely just on the line number. That is, if the
manifest specifies that a weakness is present at line L
and the tool reports an error at line L, we assume that it
found the right one. This could lead to misclassification
because the tool could miss the real error specified in the
manifest and output another one at the same line. Our
manual inspection process in Section 5 suggests that the
number of such misclassified bugs is minimal.

The second line in Table 1 contains the number of
errors reported by the tool which do not appear in the
manifest. We call these “extra” errors. Given the maturity
of the benchmark, we expect that most “extra” errors
are false positives, but this has to be manually checked.
The tool does not yet detect automatically if the error
reported by a static analyzer, at a given line, falls in the
same category as the corresponding error in the manifest.
However, it can generate a spreadsheet containing all
errors detected by a tool, together with the corresponding
errors in the manifest (if they exist) and the source code
of the test case, which facilitates manual inspection of the
tool output.

We have also timed the execution of the static analysis
tools on the entire benchmark. The running times appear
in the fourth line in Table 1. The lightweight tools (Cp-
pCheck, Splint) are quite fast. On the other side, the tools
based on symbolic execution (Clang, CodeSonar) are the
slowest, followed by Facebook Infer which is a little faster.

All tests have been performed on an computer
equipped with 8GB RAM and an 2.9 GHz i3 processor
with 2 cores and hyperthreading.

4.2. Results by Category

We have also analyzed how the tools perform on the
various categories of vulnerabilities in the CWE list. As
the CWE list contains thousands of vulnerabilities, we
have chosen some views of the CWE list, which contain
vulnerabilities that we are interested in. A CWE view is
simply a subset of the DAG-like CWE hierarchy, which
includes several categories of weaknesses based on some
criteria. An example of such a view is the CWE/SANS
Top 25 Most Dangerous Software Errors2. This view
covers critical software errors that can lead to serious
vulnerabilities in software.

The results of running the analysis tools over
CWE/SANS Top 25 Most Dangerous Software Errors are
shown in Table 2. For each weakness category and for
each tool we show how many weaknesses included in that
category were detected by the tool w.r.t. the total number

2. We use here the latest version of this view which was released in
2011.

of weaknesses in that category reported in the manifest.
For example, CodeSonar finds 267 weaknesses (out of
652 reported in the manifest) in the CWE-867:2011 Top
25 - Weaknesses On the Cusp category. Splint standard
detects 69 out of 89 weaknesses in category CWE-681:
Incorrect Conversion between Numeric Types, while its
weak version finds only 45.

Table 2 consists only of the categories in the view
CWE/SANS Top 25 Most Dangerous Software Errors that
have at least an instance in the ITC benchmark.

Two other views that we are interested in are the CERT
C and CERT C++ Secure Coding Standards views. These
standards contain rules for secure coding in the C/C++
programming languages. The rules serve as guidelines
for developers and at the same time they define a set
of best practices. The corresponding CWE view includes
weaknesses addressed by rules in the CERT C/C++ Secure
Coding Standard. We analysed the Toyota ITC benchmark
with respect to weaknesses occuring in these views and
we show the results in Table 3.

Note that Tables 2 and 3 only show a partial picture
of the problem, since we do not currently calculate the
number of “extra” errors reported by the tools. This cal-
culation would require inspecting the error messages of
the tool and determining if it fits a particular category and
it seems difficult to perform automatically. We report on
our manual inspection of the “extra” errors in Section 5.

5. Discussion

The data in Tables 1, 2 and 3 are obtained automati-
cally by our scripts. We count the number of weaknesses
in the testsuite manifest that are detected by a tool by ana-
lyzing the output of the tool and comparing line numbers:
if the manifest states that a weakness is present at line
L and the tool reports a potential bug at line L, then we
consider that the tool found the particular weakness. In
particular, we do not correlate in any way the weakness
name from the manifest with the error string of the tool.
Obviously, this is potentially imprecise, because the tool
could report, say, a division by zero error at line L and the
manifest could state that line L contains a buffer overflow.

As the goal of our project is to produce a customized
static analysis solution for the partner company, we have
decided to manually inspect the output of the CppCheck
tool and of the Clang Static Analyzer, which seem to be
the most promising among the open source tools, having
reasonable recall and precision ratios, based on results in
Table 1.

The other open source tools (Splint weak, Splint stan-
dard and Clang alpha) seem to find very few bugs, but
also report many extra errors (likely false positives).

Therefore, we have manually analyzed the output of
CppCheck and of the Clang Static Analyzer (core) to
determine whether misclassification errors occured, but
also to better understand their behavior. We have also
manually checked all errors reported by these two tools at
line numbers for which the manifest does not contain any
information. We initially expected that these extra errors
reported by the tool fall in the following category:

1) false positives;
2) irrelevant to our case study because they do not

represent vulnerabilities;

CppCheck Splint Splint Clang Clang CodeSonar Facebook
(weak) (standard) (core) (alpha) Infer

Tool version 1.72 3.1.1 3.1.1 5.0.0 5.0.0 4.4p0 v0.12.0
Detected 132/1915 79/1915 344/1915 125/1915 326/1915 651/1915 149/1915

Extra 42 229 2809 125 1406 649 39
Total analysis
time (seconds) 5.80 2.33 1.88 293.62 580.84 1346.86 159.52

TABLE 1. SUMMARY OF FINDINGS.

Category CppCheck Clang Clang CodeSonar Facebook Splint Splint
core alpha Infer standard weak

CWE-867:2011 Top 25 - Weaknesses On the Cusp 32/652 41/652 77/652 267/652 129/652 194/652 57/652
CWE-476:NULL Pointer Dereference 12/353 40/353 36/353 195/353 108/353 99/353 7/353
CWE-681:Incorrect Conversion between Numeric Types 0/89 1/89 27/89 35/89 0/89 69/89 45/89
CWE-865:2011 Top 25 - Risky Resource Management 10/85 3/85 12/85 12/85 0/85 8/85 4/85
CWE-190:Integer Overflow or Wraparound 10/63 1/63 12/63 4/63 0/63 8/63 4/63
CWE-825:Expired Pointer Dereference 11/58 0/58 5/58 24/58 12/58 7/58 0/58
CWE-772:Missing Release of Resource
after Effective Lifetime 9/53 0/53 1/53 2/53 9/53 14/53 2/53
CWE-770:Allocation of Resources
Without Limits or Throttling 0/33 0/33 4/33 2/33 0/33 4/33 2/33
CWE-754:Improper Check for
Unusual or Exceptional Conditions 0/32 0/32 2/32 6/32 0/32 1/32 1/32
CWE-362:Concurrent Execution using Shared
Resource with Improper Synchronization (’Race Condition’) 0/31 0/31 0/31 0/31 0/31 0/31 0/31
CWE-131:Incorrect Calculation of Buffer Size 0/22 2/22 0/22 8/22 0/22 0/22 0/22
CWE-330:Use of Insufficiently Random Values 0/2 0/2 2/2 2/2 0/2 0/2 0/2
CWE-822:Untrusted Pointer Dereference 0/1 0/1 0/1 1/1 0/1 0/1 0/1

TABLE 2. DETECTION BY CATEGORIES OF WEAKNESSES INCLUDED IN THE CWE/SANS TOP 25 MOST DANGEROUS SOFTWARE ERRORS VIEW.

CERT C Secure Coding Sections CppCheck Clang Clang Codesonar Facebook Splint Splint
core alpha Infer standard weak

CWE-742: Sec. 08 - Memory Management (MEM) 98/1101 86/1101 154/1101 412/1101 138/1101 202/1101 24/1101
CWE-747: Sec. 49 - Miscellaneous (MSC) 76/937 32/937 188/937 285/937 14/937 165/937 61/937
CWE-738: Sec. 04 - Integers (INT) 87/739 44/739 146/739 219/739 14/739 157/739 59739
CWE-741: Sec. 07 - Characters and Strings (STR) 66/656 30/656 145/656 205/656 15/656 143/656 54/656
CWE-743: Sec. 09 - Input Output (FIO) 79/624 29/624 106/624 179/624 38/624 88/624 10/624
CWE-746: Sec. 12 - Error Handling (ERR) 76/564 28/564 111/564 143/564 14/564 83/564 14/564
CWE-740: Sec. 06 - Arrays (ARR) 72/564 40/564 103/564 157/564 15/564 91/564 12/564
CWE-737: Sec. 03 - Expressions (EXP) 12/553 44/553 87/553 269/553 109/553 172/553 53/553
CWE-744: Sec. 10 - Environment (ENV) 66/468 27/468 95/468 137/468 14/468 71/468 8/468
CWE-739: Sec. 05 - Floating Point (FLP) 21/262 19/262 47/262 96/262 1/262 82/262 49/262
CWE-748: Sec. 50 - POSIX (POS) 2/107 3/107 29/107 32/107 1/107 1/107 1/107
CWE-745: Sec. 11 - Signals (SIG) 0/76 0/76 29/76 16/76 0/76 0/76 0/76
CWE-736: Sec. 02 -
Declarations and Initialization (DCL) 0/34 3/34 3/34 24/34 1/34 0/34 0/34

CERT C++ Secure Coding Sections CppCheck Clang Clang Codesonar Facebook Splint Splint
core alpha Infer standard weak

CWE-876:Sec. 08 - Memory Management (MEM) 107/1120 83/1120 152/1120 390/1120 146/1120 216/1120 26/1120
CWE-883:Sec. 49 - Miscellaneous (MSC) 76/937 32/937 188/937 285/937 14/937 165/937 61/937
CWE-872:Sec. 04 - Integers (INT) 87/739 44/739 146/739 219/739 14/739 157/739 59/739
CWE-875:Sec. 07 - Characters and Strings (STR) 66/656 30/656 145/656 205/656 15/656 143/656 54/656
CWE-877:Sec. 09 - Input Output (FIO) 79/631 27/631 108/631 163/631 37/631 92/631 12/631
CWE-874:Sec. 06 - Arrays and the STL (ARR) 72/564 40/564 103/564 157/564 15/564 91/564 12/564
CWE-878:Sec. 10 - Environment (ENV) 66/468 27/468 95/468 137/468 14/468 71/468 8/468
CWE-871:Sec. 03 - Expressions (EXP) 12/357 42/357 38/357 197/357 108/357 99/357 7/357
CWE-873:Sec. 05 - Floating Point Arithmetic (FLP) 21/262 19/262 47/262 96/262 1/262 82/262 49/262
CWE-882:Sec. 14 - Concurrency (CON) 13/116 0/116 1/116 20/116 23/116 17/116 2/116
CWE-879:Sec. 11 - Signals (SIG) 0/76 0/76 29/76 16/76 0/76 0/76 0/76
CWE-880:Sec. 12 -
Exceptions and Error Handling (ERR) 0/32 0/32 2/32 6/32 0/32 1/32 1/32

TABLE 3. DETECTION BY CATEGORIES OF WEAKNESSES OF THE C/C++ CERT SECURE CODING STANDARD VIEW.

3) or they could mean that the testsuite contains itself
a bug.

By manually inspecting the output of the tools, we
have found an additional possibility: the tool reports an
error that appears in the manifest, but the tool reports it at
a different point (e.g. the tool reports a memory leak at the
end of a function, while the manifest contains information
about the memory leak at the allocation point).

All in all, we have manually analyzed 174 errors
reported by CppCheck (out of which 132 lines correspond
to a weakness in the manifest) and 250 errors reported by
the Clang Static Analyzer (out of which 125 correspond
to a weakness in the manifest). We report our findings
below.

5.1. CppCheck

We have found that all 132 errors that CppCheck
reports at line numbers included in the manifest are ac-
curate, in the sense that the error message produced by
CppCheck describes accurately the weakness specified in
the manifest. In addition, the CppCheck error messages
are oftentimes more precise than what is specified in the
manifest.

For example, the following two examples contain an
occurence of weakness CWE-562: Return of Stack Vari-
able Address.

void return_local_002_func_001 (int **pp)
{
int buf[5];

*pp = buf;
}

int* return_local_001_func_001 ()
{
int buf[5];
return buf;
}

The weakness refers to the fact that the address of
a local variable escapes the context of the corresponding
function call. This is a potential vulnerability because the
local variables are only valid during the function call.
After the function ends, the address that escapes points
to an uncontrolled place in the stack. Writing at that
address would smash the stack. Note that although in
both examples the address of a local variables escapes
the function, it happens in a different way: in the first
example, the address of the local variable is written in
some output parameter, while in the second example the
address of the local variable is returned directly. Cp-
pCheck reports in the first case that “Address of local auto-
variable assigned to a function parameter.”, while in the
second case that “Pointer to local array variable returned.”
The same precision gain happens with other weaknesses
as well. For example, in the case of weaknesses CWE-
824: Access of Uninitialized Pointer or CWE-457: Use
of Uninitialized Variable, CppCheck also reports which is
the variable/pointer that was not initialized.

We have found that 12 out of the 42 “extra” errors
(errors reported by CppCheck at line numbers that are not
specified in the manifest as containing errors) are false
positives. This means that CppCheck wrongly reports a
weakness. We have found that most of these false positives

are caused by an imprecision in the implementation of
CppCheck that causes infeasible paths to be considered.
For example, consider the following problematic code,
extracted from the testsuite:

if(staticflag == 10)
b = ...;
else
a = dptr[1][1];
printf("%d",a);

CppCheck reports that variable “a” is not initialized,
despite the fact that staticflag is a global constant
different from 10 and therefore the second branch of the
if statement is guaranteed to be taken and initialize “a”.
Therefore, we consider that the precision of CppCheck
would greatly increase by making it path-sensitive.

The rest of the 30 “extra” errors (errors reported by
CppCheck at line numbers that are not specified in the
manifest as containing errors) are true positives, meaning
that they represent actual errors.

An interesting true positive, which reflects
an important feature of CppCheck, occurs in the
st_cross_thread_access.c testcase. The relevant
lines are the following:

#if !defined(CHECKER_POLYSPACE)
if (st_cross_thread_access_005_thread_set != NO_THREAD)
{
;
}
else
{
...;

#endif /* defined(CHECKER_POLYSPACE) */
}

Note that the closing brace of the else branch is outside
of the ifdef. The macro CHECKER_POLYSPACE is
not defined in the testcase and therefore the code above
compiles succesfully. However, CppCheck analyzes the
code for all possible definitions of macros and it therefore
reports the error “Invalid number of character ’{’ when
these macros are defined: ’CHECKER POLYSPACE’.”
We believe that these closing braces should be fixed in
the testsuite.

Another class of errors (10 occurences) that are de-
tected by CppCheck but are not specified in the manifest
is represented by uninitialized variables. The relevant lines
from one such example are the following:

st_overflow_005_s_001 s;
st_overflow_005_func_001(s, 10);

The variable s is a struct that is not initialized
and which is passed as a parameter to a function. The
function does not read s at all. CppCheck reports at the
function call the fact that s is not initialized. The manifest
follows a different philosophy: because s is not read by
the function that was called, it does not matter that it was
not initialized.

Several other true positives occur because of a differ-
ence in philosophy between the testsuite and CppCheck.
Consider the following (minified) example:

void uninit_pointer_011 ()
{
unsigned int * ptr,a=0;
ptr = (unsigned int *)malloc(10*sizeof(unsigned int *));

int i;
if (ptr!=NULL)
{
for(i=0; i<10/2; i++)
ptr[i] = i;

}
for(i=0; i<10; i++)
{
a += ptr[i]; /*ERROR:Uninitialized pointer*/
}
}

The CppCheck reports that there is a memory leak,
since ptr is not deallocated at the end of the function.
The testsuite does not specify the memory leak, since there
is another weakness (uninitialized pointer) which occurs
on the code path.

Finally, CppCheck reports an error in the following
code (shown minified here):

void f(wrong_arguments_func_pointer_012_s_001 st,
wrong_arguments_func_pointer_012_s_001* st1)

{
int temp;
int i=0;
memset(st1, 0, sizeof(*st1));
for (i = 0; i < MAX; i++)
{
st.arr[i] = i;
st1->arr[i] = st.arr[i]+i;
temp += st.arr[i];
}

}

This testcase illustrates another vulnerability, but the
line temp += st.arr[i]; contains a read of the vari-
able temp, which was not initialized. This weakness is
not specified in the manifest of the testsuite, but is reported
by CppCheck.

We have also found that the “extra” errors that Cp-
pCheck reports contain three instances of weaknesses
which are acknowledged in the testsuite as comments in
the C++ code, but these weaknesses do not appear in
the manifest file. This is obviously a deficiency in the
testsuite.

5.2. Clang Static Analyzer (core checkers)

Of the 125 weaknesses in the testsuite that the Clang
Static Analyzer detects (based on line numbers), we found
that 6 weakness are wrongly categorized, because the error
reported by Clang at the corresponding line number does
not match the weakness in the testsuite manifest. The rest
of the 119 weaknesses are correctly counted.

Of the six problematic cases, we have found that three
are false positives (clang reports an error that does not
exist at that line), which means these are instances of
a deficiency in the Clang Static Analyzer. However, in
the other three cases, it reports true bugs, different from
the bugs specified in the testsuite manifest. Therefore
the manifest file should be enriched with these potential
vulnerabilities.

Here are the relevant lines of such an example:

int flag=10;
(flag == 10) ?

(ptr = (int*) malloc(10*sizeof(int))) :
(a = 5);

The testsuite manifest specifies that a tool should
report a CWE-561: Dead Code error on the second line
(because the assignment a = 5 is never executed). How-
ever, the Clang Static Analyzer reports a type mismatch
between the second (of type int *) and third (of type
int) arguments of the ternary operator.

Another example (minified) is also quite interesting:

typedef struct {
int a;
int b;
int c;
} ll;
ll *llg;
void littlemem_st_004 ()
{
char buf[10];
llg = (ll *)buf;
lgg->c = 1;
}

A cast is used to convert a local 10-byte buffer to
a (presumably) 12-byte structure. Writing to the third
element of the structure will therefore have the effect of
writing past buf, thereby smashing the stack. Unfortu-
nately, the Clang Static Analyzer cannot detect this error,
but it detects another: a pointer to the local variable buf
escapes the function call through the global variable llg,
which can potentially lead to a vulnerability. We believe
this weakness should be added to the manifest of the
testsuite.

Of the 125 “extra” errors reported by the Clang Static
Analyzer, we have found that 113 errors are irrelevant
to our study, in the sense that they do not represent
weaknesses. For example, most of these irrelevant errors
are of the form pthread.h:743: warning:
declaration of built-in function
’__sigsetjmp’ requires inclusion of the
header <setjmp.h>, which is simply a consequence
of our system configuration. The other type of irrelevant
errors are of the form underrun_st.c:30: note:
array ’buf’ declared here, meaning that they
are not true errors, but clarifications of previous error
messages output by the tool.

Of the other 12 “extra” errors, 8 are true positives,
2 resulted in compilation errors on our system and 2 are
false positives. Here is an interesting (minified) example
of a true positive, which illustrates an imprecision in the
testsuite manifest:

int i = 0;
char** doubleptr=(char**) malloc(10* sizeof(char*));

for (i=0;i<2;i++)
{
doubleptr[i]=(char*) malloc(10*sizeof(char));
if(doubleptr[i]!=NULL)
doubleptr[0][0]=’T’;

}

The Clang Static Analyzer reports that the line
doubleptr[0][0] = ’T’; contains potentially a
NULL pointer dereferencing. This can occur when the
malloc fails at the first iteration but succeeds at the second
iteration. However, this weakness does not appear in the
manifest (the testcase illustrates other weaknesses).

6. Interpretation and Future work

As is apparent in Table 1, CodeSonar finds the greatest
number of weakness in the testsuite, but it also finds the
most “extra” errors and its running time is the greatest
in the testsuite. The “extra” errors need to be manually
inspected to decide whether they are relevant or not.

CppCheck and Splint are the fastest tools, but at the
cost of some imprecisions, some of which have been
discussed in the manual analysis of the CppCheck tools
in Section 5.1. The Clang Static Analyzer (core checkers)
offers a good tradeoff. The manual inspection of the “ex-
tra” errors revealed that most of them are warnings related
to our system configuration (e.g. double declarations due
to the standard library inclusion order) or simply extra
information on other errors (e.g. lines where uninitialized
variables were declared). We still need to manually inspect
the output of the remaining tools. At first sight, Facebook’s
Infer seems to be very good at catching memory issues
such as NULL pointer dereferencing or double frees.

In the future, we will expand our comparison with
other static analysis tools for which at least an evaluation
version is available. The architecture of our framework
allows to easily add other static analysis tools to the
comparison, as all that is needed is a function to parse
the output of the static analyzer.

Currently, we have manually inspected only the results
reported by CppCheck and Clang. We plan to extend our
manual inspection to the results reported by other tools as
well, to see if there are bugs relevant for BitDefender and
not found by the others. We will also improve our analysis
by performing additional statistics, e.g., the number of
vulnerabilities that can only be found by a given tool,
and by formalising the subtle difference between false-
positives and irrelevant “extra” errors.

In addition to expanding the set of tools that we
compare, we plan to support test suites other than Toyota
ITC as well.

We will present these results to the partner company
and based on the results, we will choose an appropriate
open-source static analysis tool to customize for the needs
of Bitdefender.

Acknowledgment

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS/CCCDI UEFISCDI, project number PN-III-P2-2.1-
BG-2016-0394, within PNCDI III.

References

[1] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, “A survey of
static analysis methods for identifying security vulnerabilities in
software systems,” IBM Syst. J., vol. 46, no. 2, pp. 265–288, Apr.
2007.

[2] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of auto-
mated techniques for formal software verification,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 27, no. 7, pp. 1165–1178, Jul.
2008.

[3] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Workshop on
the evaluation of software defect detection tools, vol. 5, 2005.

[4] M. Zitser, R. Lippmann, and T. Leek, “Testing static analysis
tools using exploitable buffer overflows from open source code,”
SIGSOFT Softw. Eng. Notes, vol. 29, no. 6, pp. 97–106, Oct. 2004.

[5] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz, “Begbunch: Benchmarking for c
bug detection tools,” in International Workshop on Defects in Large
Software Systems. New York, NY, USA: ACM, 2009, pp. 16–20.

[6] CWE, “Common weakness enumeration,” 2017. [Online].
Available: https://cwe.mitre.org/

[7] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for bench-
marks of static analysis tools,” in ISSREW 2015. IEEE Computer
Society, 2015, pp. 12–15.

[8] NIST-SARD, “Software Assurance Reference Dataset (SARD)
Testsuites,” https://samate.nist.gov/SARD/testsuite.php, 2017.

[9] GrammaTech, “Codesonar,” 2017, (retrieved March, 2017). [On-
line]. Available: https://www.grammatech.com/products/codesonar

[10] Clang., “Clang Static Analyzer,” 2017, (retrieved March, 2017).
[Online]. Available: https://clang-analyzer.llvm.org/

[11] D. Marjamäki, “Cppcheck - a tool for static c/c++ code analysis,”
2017. [Online]. Available: http://cppcheck.wiki.sourceforge.net/

[12] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Ro-
driguez, “Moving fast with software verification,” in NFM 2015.
Springer International Publishing, 2015, pp. 3–11.

[13] D. Evans, J. Guttag, J. Horning, and Y. M. Tan, “Lclint: A tool for
using specifications to check code,” SIGSOFT Softw. Eng. Notes,
vol. 19, no. 5, pp. 87–96, Dec. 1994.

[14] J.-C. Filliâtre, “Deductive software verification,” International
Journal on Software Tools for Technology Transfer, vol. 13, no. 5,
p. 397, Aug 2011. [Online]. Available: https://doi.org/10.1007/
s10009-011-0211-0

[15] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-
critical software,” in PLDI 2003. ACM, 2003, pp. 196–207.

[16] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints,” in POPL 1977. Los Angeles, California:
ACM Press, New York, NY, 1977, pp. 238–252.

[17] Synopsys, “Coverity,” 2017. [Online]. Available: https://scan.
coverity.com/

[18] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c: A software analysis perspective,” For-
mal Aspects of Computing, vol. 27, no. 3, pp. 573–609, 2015.

[19] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and
static driver verifier: Technology transfer of formal methods inside
microsoft,” in IFM 2004. Springer Berlin Heidelberg, 2004, pp.
1–20.

[20] CoderGears, “CppDepend,” 2017. [Online]. Available: http:
//www.cppdepend.com/

[21] ITC, “Static Analysis benchmark,” 2016. [Online]. Available:
https://samate.nist.gov/SARD/view.php?tsID=104

[22] D. Guth, C. Hathhorn, M. Saxena, and G. Rosu, “Rv-match:
Practical semantics-based program analysis,” in CAV 2016, ser.
LNCS, vol. 9779. Springer, July 2016, pp. 447–453.

[23] OWASP, “Owasp benchmark,” 2017. [Online]. Available: https:
//www.owasp.org/index.php/Benchmark

[24] M. Mantere, I. Uusitalo, and J. Röning, “Comparison of static code
analysis tools,” in SECURWARE 2009. IEEE Computer Society,
2009, pp. 15–22.

[25] H. K. Brar and P. J. Kaur, “Comparing detection ratio of three static
analysis tools,” International Journal of Computer Applications,
vol. 124, no. 13, pp. 35–40, August 2015.

[26] P. Emanuelsson and U. Nilsson, “A comparative study of industrial
static analysis tools,” Electr. Notes Theor. Comput. Sci., vol. 217,
pp. 5–21, 2008.

[27] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug
finders - test and measurement of static code analyzers,” in COU-
FLESS 2015. IEEE Press, 2015, pp. 14–20.

https://cwe.mitre.org/
https://samate.nist.gov/SARD/testsuite.php
https://www.grammatech.com/products/codesonar
https://clang-analyzer.llvm.org/
http://cppcheck.wiki.sourceforge.net/
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/s10009-011-0211-0
https://scan.coverity.com/
https://scan.coverity.com/
http://www.cppdepend.com/
http://www.cppdepend.com/
https://samate.nist.gov/SARD/view.php?tsID=104
https://www.owasp.org/index.php/Benchmark
https://www.owasp.org/index.php/Benchmark

	Introduction
	Related Work
	Our Framework
	Experiments
	Summary
	Results by Category

	Discussion
	CppCheck
	Clang Static Analyzer (core checkers)

	Interpretation and Future work
	References

