Proving Reachability Modulo Theories

Ștefan Ciobâcă

Faculty of Computer Science
Alexandru Ioan Cuza University, Iași, Romania
stefan.ciobaca@info.uaic.ro

July 8th, 2017

(joint work with Dorel Lucanu)
Summary

Given

\[S = \{ \begin{array}{c} l_1 \rightarrow r_1 \text{ if } \phi_1, \\ \vdots, \\ l_n \rightarrow r_n \text{ if } \phi_n \end{array} \}, \]

how to prove

\[S \vdash u \rightarrow^* v \text{ if } \phi? \]
Summary

Given

\[S = \{ l_1 \rightarrow r_1 \text{ if } \phi_1, \]
\[\ldots, \]
\[l_n \rightarrow r_n \text{ if } \phi_n \}, \]

how to prove

\[S \vdash u \rightarrow^* v \text{ if } \phi? \]

Example. Given:

\[S = \{ \text{init}(n) \rightarrow \text{loop}(0, n) \text{ if } \text{true}, \]
\[\text{loop}(s, i) \rightarrow \text{loop}(s + i, i - 1) \text{ if } i > 0 \]
\[\text{loop}(s, 0) \rightarrow \text{done}(s) \text{ if } \text{true} \]

prove

\[S \vdash \text{init}(n) \rightarrow^* \text{done}(n(n + 1)/2) \text{ if } n \geq 0. \]
Plan

Summary

A Coinductive Definition of Reachability Properties

Constrained Terms

Constrained Rule Systems

Proving Reachability Properties

Tool Demo

Conclusions
Transition Systems

Let \((M, \leadsto)\) be a transition system, where \(\leadsto \subseteq M \times M\). We write \(\gamma \leadsto \gamma'\) for \((\gamma, \gamma') \in \leadsto\). An element \(\gamma \in M\) is \textit{irreducible} if there is no \(\gamma' \in M\) such that \(\gamma \leadsto \gamma'\).
Transition Systems

Let (M, \leadsto) be a transition system, where $\leadsto \subseteq M \times M$. We write $\gamma \leadsto \gamma'$ for $(\gamma, \gamma') \in \leadsto$. An element $\gamma \in M$ is irreducible if there is no $\gamma' \in M$ such that $\gamma \leadsto \gamma'$.

Definition (Execution Path)

The set of (complete) execution paths is coinductively defined by the following rules:

\[
\begin{align*}
\Gamma & \quad \gamma \in M, \gamma \text{ irreducible} \\
\Gamma & \quad \gamma_0 \circ \tau \leadsto hd(\tau)
\end{align*}
\]

where the function hd is itself defined coinductively by $hd(\gamma) = \gamma$ and $hd(\gamma_0 \circ \tau) = \gamma_0$.
Definition (State and Reachability Predicates)

A state predicate is a subset $P \subseteq M$. A reachability predicate is a pair $P \Rightarrow Q$, where P and Q are state predicates. A state predicate P is runnable if for all $\gamma \in P$ there exists $\gamma' \in M$ such that $\gamma \leadsto \gamma'$.
Definition (Derivative of a State Predicate)

Given a state predicate P, the derivative of P is the state predicate $\partial(P)$, defined by $\partial(P) = \{ \gamma' \mid \gamma \sim \gamma' \text{ for some } \gamma \in P \}$.
Satisfaction of Reachability Predicates

Definition (Satisfaction of a Reachability Predicate)

An execution path \(\tau \) satisfies a reachability predicate \(P \Rightarrow Q \), written \(\tau \models \forall \ P \Rightarrow Q \), iff \(\langle \tau, P \Rightarrow Q \rangle \in \nu \text{EPSRP} \), where EPSRP consists of the following rules:

\[
\begin{align*}
\langle \tau, P \Rightarrow Q \rangle & \quad \text{hd}(\tau) \in P \cap Q \\
\langle \tau, P \Rightarrow Q \rangle & \quad \langle \gamma_0 \circ \tau, P \Rightarrow Q \rangle \quad \gamma_0 \in P, \gamma_0 \rightsquigarrow \text{hd}(\tau).
\end{align*}
\]

Definition (Demonically Valid Predicates, Coinductively)

We say that \(P \Rightarrow Q \) is demonically valid, and we write \((M, \rightsquigarrow) \models \forall \ P \Rightarrow Q \), iff \(P \Rightarrow Q \in \nu \text{DVP} \), where DVP consists of the following rules:

\[J \quad \text{Subsumption} \]
\[K \quad \text{Step} \]

\[P \Rightarrow Q \subseteq Q \]
\[P \Rightarrow Q \quad \text{P \Rightarrow Q \ runnable} \]
Satisfaction of Reachability Predicates

Definition (Satisfaction of a Reachability Predicate)

An execution path τ satisfies a reachability predicate $P \Rightarrow Q$, written $\tau \models \forall P \Rightarrow Q$, iff $\langle \tau, P \Rightarrow Q \rangle \in \nu \text{EPSRP}$, where EPSRP consists of the following rules:

$$\frac{hd(\tau) \in P \cap Q}{\langle \tau, P \Rightarrow Q \rangle} \quad \frac{\langle \tau, \partial(P) \Rightarrow Q \rangle}{\langle \gamma_0 \circ \tau, P \Rightarrow Q \rangle} \quad \gamma_0 \in P, \gamma_0 \rightsquigarrow hd(\tau).$$

Definition (Demonically Valid Predicates, Coinductively)

We say that $P \Rightarrow Q$ is demonically valid, and we write

$$(M, \rightsquigarrow) \models \forall P \Rightarrow Q,$$

iff $P \Rightarrow Q \in \nu \text{DVP}$, where DVP consists of the following rules:

$$\text{[Subsumption]} \quad \frac{P \Rightarrow Q \quad P \subseteq Q}{P \Rightarrow Q} \quad \text{[Step]} \quad \frac{\partial(P \setminus Q) \Rightarrow Q}{P \Rightarrow Q} \quad P \setminus Q \text{ runnable.}$$
Plan

Summary

A Coinductive Definition of Reachability Properties

Constrained Terms

Constrained Rule Systems

Proving Reachability Properties

Tool Demo

Conclusions
Builtins

Definition (Builtin Signature)

A *builtin signature* $\Sigma^b \triangleq (S^b, F^b)$ is any many-sorted signature that includes the following distinguished objects:

- a sort Bool together with two constants \top and \bot of sort Bool,
- the propositional operations $\neg : \text{Bool} \to \text{Bool}$, $\wedge, \vee, \rightarrow : \text{Bool} \times \text{Bool} \to \text{Bool}$, and
- an equality predicate $= : s \times s \to \text{Bool}$ for each sort $s \in S^b$.
Builtins

Definition (Builtin Signature)
A *builtin signature* $\Sigma^b \triangleq (S^b, F^b)$ is any many-sorted signature that includes the following distinguished objects:
- a sort Bool together with two constants \top and \bot of sort Bool,
- the propositional operations $\neg : \text{Bool} \to \text{Bool}$,
 $\land, \lor, \to : \text{Bool} \times \text{Bool} \to \text{Bool}$, and
- an equality predicate $\equiv : s \times s \to \text{Bool}$ for each sort $s \in S^b$.

Definition (Builtin Model)
A *builtin model* M^b is a model of a builtin signature Σ^b, where the interpretation of the distinguished objects of the builtin signature is fixed as follows: $M^b_{\text{Bool}} = \{\top, \bot\}$, $M^b_\top = \top$, $M^b_\bot = \bot$, $M^b_{\equiv}(a, b) = \top$ iff $a = b$, $M^b_\land(\top) = \bot$, $M^b_\land(\bot) = \top$, $M^b_\land(\top, b) = M^b_\land(b, \top) = b$, $M^b_\land(\bot, b) = M^b_\land(b, \bot) = \bot$, and so on.
Definition (Signature Modulo a Builtin Model)

A signature modulo a builtin model is a tuple $\Sigma \triangleq (S, \leq, F, M^b)$ consisting of

- an order-sorted signature (S, \leq, F), and
- a builtin Σ^b-model M^b, where $\Sigma^b \triangleq (S^b, F^b)$ is a builtin subsignature of (S, \leq, F).

We further assume that the only builtin constants in Σ are the elements of the builtin model, i.e., $F^b_{\varepsilon, s} = M^b_s$. Σ^b is called the builtin subsignature of Σ and $\Sigma^c = (S, \leq, (F \setminus F^b) \cup \bigcup_{s \in S^b} F^b_{\varepsilon, s})$ the constructor subsignature of Σ.
Model Modulo Builtins

Definition (Model M^Σ Generated by a Signature Modulo a Builtin Model)

Let $\Sigma \triangleq (S, \leq, F, M^b)$ be a signature modulo a builtin model. The model M^b is extended in a protected way to a (S, \leq, F)-model M^Σ defined as follows:

- $M^\Sigma_s = T^\Sigma_{c,s}(M^b)$ for each $s \in S \setminus S^b$, i.e. M^Σ_s includes the constructor terms;
- $M^\Sigma_f = M^b_f$ for each $f \in F^b$;
- M^Σ_f is the term constructor $M^\Sigma_f(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ for each $f \in F \setminus F^b$.
Constraint Formulae

Definition (Constraint Formulae)

The set $\text{CF}(\Sigma, X)$ of constraint formulae over variables X is inductively defined as follows:

$$\phi ::= b \mid t_1 = t_2 \mid (\exists x)\phi' \mid \neg\phi' \mid \phi_1 \land \phi_2$$

where b ranges over $T_{\Sigma,\text{Bool}}(X)$, t_i over $T_{\Sigma,s_i}(X)$ such that s_1 and s_2 are in the same connected component, and x ranges over all variables.
Constraint Formulae

Definition (Constraint Formulae)
The set \(\text{CF}(\Sigma, X) \) of constraint formulae over variables \(X \) is inductively defined as follows:

\[
\phi ::= b \mid t_1 = ? t_2 \mid (\exists x)\phi' \mid \neg \phi' \mid \phi_1 \land \phi_2
\]

where \(b \) ranges over \(T_{\Sigma, \text{Bool}}(X) \), \(t_i \) over \(T_{\Sigma, s_i}(X) \) such that \(s_1 \) and \(s_2 \) are in the same connected component, and \(x \) ranges over all variables.

Definition (Semantics of Constraint Formulae)
The satisfaction relation \(\models \) is inductively defined over the model \(M^\Sigma \), valuations \(\alpha : \text{Var} \to M^\Sigma \), and formulae \(\phi \in \text{CF}(\Sigma, X) \), as follows:

- \(M^\Sigma, \alpha \models b \) iff \(\alpha(b) = \text{true} \), where \(b \in T_{\Sigma, \text{Bool}}(X) \);
- \(M^\Sigma, \alpha \models t_1 = ? t_2 \) iff \(\alpha(t_1) = \alpha(t_2) \);
- \(M^\Sigma, \alpha \models (\exists x)\phi \) iff there exists \(a \in M_s \) (where \(x \in X_s \)) such that \(M^\sigma, \alpha[x \mapsto a] \models \phi \);
Constrained Terms

Definition (Constrained Terms)

A constrained term φ of sort $s \in S$ is a pair $(t \mid \phi)$ with $t \in T_{\Sigma,s}(X)$ and $\phi \in CF(\Sigma, X)$.
Constrained Terms

Definition (Constrained Terms)
A *constrained term* \(\varphi \) of sort \(s \in S \) is a pair \((t \mid \phi) \) with \(t \in T_{\Sigma,s}(X) \) and \(\phi \in CF(\Sigma, X) \).

Definition (Valuation Semantics of Constrained Terms)
The *valuation semantics* of a constrained term \((t \mid \phi) \) is the set of valuations\(\| (t \mid \phi) \| \triangleq \{ \alpha : X \rightarrow M^\Sigma \mid M^\Sigma, \alpha \models \phi \} \).
Constrained Terms

Definition (Constrained Terms)
A constrained term φ of sort $s \in S$ is a pair $(t \mid \phi)$ with $t \in T_{\Sigma,s}(X)$ and $\phi \in CF(\Sigma, X)$.

Definition (Valuation Semantics of Constrained Terms)
The valuation semantics of a constrained term $(t \mid \phi)$ is the set of valuations $\llbracket (t \mid \phi) \rrbracket \triangleq \{ \alpha : X \rightarrow M^\Sigma \mid M^\Sigma, \alpha \models \phi \}$.

Definition (State Predicate Semantics of Constrained Terms)
The state predicate semantics of a constrained term is defined by

$$\llbracket (t \mid \phi) \rrbracket \triangleq \{ \alpha(t) \mid \alpha \in \llbracket (t \mid \phi) \rrbracket \}.$$
Plan

Summary

A Coinductive Definition of Reachability Properties

Constrained Terms

Constrained Rule Systems

Proving Reachability Properties

Tool Demo

Conclusions
Constrained Rule Systems

Definition (Constrained Rule Systems)

A constrained rule is a tuple \((l, r, \phi)\), often written as \(l \rightarrow r \text{ if } \phi\), where \(l, r\) are terms in \(T_\Sigma(X)\) having sorts in the same connected component, and \(\phi \in \text{CF}(\Sigma, X)\).

A constrained rule system \(\mathcal{R}\) is a set of rules. \(\mathcal{R}\) defines a transition relation \(\rightsquigarrow_\mathcal{R}\) on \(M^\Sigma\) as follows: \(t \rightsquigarrow_\mathcal{R} t'\) iff there exist a rule \(l \rightarrow r \text{ if } \phi\) in \(\mathcal{R}\), a context \(c[\cdot]\), and a valuation \(\alpha : X \rightarrow M^\Sigma\) such that \(t = \alpha(c[l]), t' = \alpha(c[r])\) and \(M^\Sigma, \alpha \models \phi\).
Reachability Properties

Definition (Reachability Properties of Constrained Rule Systems)

A *reachability formula* is a pair of constrained terms written as \(\varphi \Rightarrow \varphi' \), which may share some variables. We say that a constrained rule system \(\mathcal{R} \) *demonically satisfies* \(\varphi \Rightarrow \varphi' \), and write

\[
\mathcal{R} \models^\forall \varphi \Rightarrow \varphi'
\]

iff \((M^\Sigma, \simto_{\mathcal{R}}) \models^\forall \,[\sigma(\varphi)] \Rightarrow [\sigma(\varphi')]\) for each substitution \(\sigma : \text{var}(\varphi) \cap \text{var}(\varphi') \rightarrow M^\Sigma\).
Derivatives of Constrained Terms

Definition (Derivatives of Constrained Terms)

The set of derivatives of a constrained term $\varphi \triangleq (t \mid \phi)$ w.r.t. a rule $l \rightarrow r$ if ϕ_{lr} is

$$\Delta_{l,r,\phi_{lr}}(\varphi) \triangleq \{(c[r] \mid \phi') \mid M^\Sigma \models \phi' \leftrightarrow (\phi \land t = ? c[l] \land \phi_{lr}),$$

$$c[\cdot] \text{ an appropriate context,}$$

$$\phi' \text{ is satisfiable}\} \quad (1)$$

where the variables in $l \rightarrow r$ if ϕ are renamed such that $\text{var}(l \rightarrow r \text{ if } \phi)$ and $\text{var}(\varphi)$ are disjoint.

If \mathcal{R} is a set of rules, then $\Delta_{\mathcal{R}}(\varphi) = \bigcup_{(l,r,\phi_{lr}) \in \mathcal{R}} \Delta_{l,r,\phi_{lr}}(\varphi)$. A constrained term φ is \mathcal{R}-derivable if $\Delta_{\mathcal{R}}(\varphi) \neq \emptyset$.
Derivatives of Constrained Terms

Definition (Derivatives of Constrained Terms)

The set of derivatives of a constrained term \(\varphi \triangleq (t \mid \phi) \) w.r.t. a rule \(l \rightarrow r \) if \(\phi_{lr} \) is

\[
\Delta_{l,r,\phi_{lr}}(\varphi) \triangleq \{ (c[r] \mid \phi') \mid M^\Sigma \models \phi' \iff (\phi \land t =^? c[l] \land \phi_{lr}), \\
c[\cdot] \text{ an appropriate context}, \\
\phi' \text{ is satisfiable} \}
\]

where the variables in \(l \rightarrow r \) if \(\phi \) are renamed such that \(\text{var}(l \rightarrow r \text{ if } \phi) \) and \(\text{var}(\varphi) \) are disjoint.

If \(\mathcal{R} \) is a set of rules, then \(\Delta_{\mathcal{R}}(\varphi) = \bigcup_{(l,r,\phi_{lr}) \in \mathcal{R}} \Delta_{l,r,\phi_{lr}}(\varphi) \). A constrained term \(\varphi \) is \(\mathcal{R} \)-derivable if \(\Delta_{\mathcal{R}}(\varphi) \neq \emptyset \).

Let \(\varphi \triangleq (t \mid \phi) \), \(\mathcal{R} \) a constrained rule system, and \((M^\Sigma, \leadsto_{\mathcal{R}}) \) the transition system defined by \(\mathcal{R} \). Then \(\lfloor \Delta_{\mathcal{R}}(\varphi) \rfloor = \partial(\lfloor \varphi \rfloor) \).
Example

\[S = \{ \begin{align*}
 & \text{init}(n) \rightarrow \text{loop}(0, n) \text{ if true,} \\
 & \text{loop}(s, i) \rightarrow \text{loop}(s + i, i - 1) \text{ if } i > 0 \\
 & \text{loop}(s, 0) \rightarrow \text{done}(s) \text{ if true} \end{align*} \} \]
Example

\[
S = \{ \\text{init}(n) \rightarrow \text{loop}(0, n) \text{ if true}, \\
\text{loop}(s, i) \rightarrow \text{loop}(s + i, i - 1) \text{ if } i > 0 \\
\text{loop}(s, 0) \rightarrow \text{done}(s) \text{ if true} \}
\]

\[
\Delta_R((\text{loop}(s, n) \mid \text{true})) = \{ (\text{loop}(s + n, n - 1) \mid n > 0), \\
(\text{done}(s) \mid n = 0) \}
\]
Plan

Summary

A Coinductive Definition of Reachability Properties

Constrained Terms

Constrained Rule Systems

Proving Reachability Properties

Tool Demo

Conclusions
Proof System for Symbolic Execution

Figure: The DSTEP(\(\mathcal{R} \)) Proof System

\[(t \mid \phi) \Rightarrow \varphi' \]
\[(t'' \mid \phi'' \land \neg \phi''') \Rightarrow (t' \mid \phi') \]
\[(t \mid \phi) \Rightarrow (t' \mid \phi') \]
\[(t'' \mid \phi'') \Rightarrow \varphi' \equiv (t \mid \phi) \Rightarrow \varphi', \text{ and} \]
\[M^\Sigma \models \phi''' \leftrightarrow (\exists X)(t'' =? t' \land \phi'), \text{ and} \]
\[X \triangleq \text{var}(t', \phi') \setminus \text{var}(t'', \phi'') \]

\[\{(t^i \mid \phi^j) \Rightarrow \varphi' \mid (t^i \mid \phi^j) \in \Delta_\mathcal{R}((t'' \mid \phi''))\} \]
\[(t \mid \phi) \Rightarrow \varphi' \]

\[(t \mid \phi) \ \mathcal{R}-\text{derivable, and} \]
\[(t'' \mid \phi'') \Rightarrow \varphi' \equiv (t \mid \phi) \Rightarrow \varphi', \text{ and} \]
\[\phi'' \land \land \left\{ \neg (\exists Y)\phi^j \mid (t^i \mid \phi^j) \in \Delta_\mathcal{R}((t'' \mid \phi'')), \right. \]
\[Y \triangleq \text{var}(t^j, \phi^j) \setminus \text{var}(t'', \phi'') \} \]
\[\text{not satisfiable} \]
Let \mathcal{R} be a constrained rule system. Then $\mathcal{R} \models \forall \nu \text{DSTEP}(\mathcal{R})$.
Soundness

Let \mathcal{R} be a constrained rule system. Then $\mathcal{R} \models \forall \nu \overline{\text{DSTEP}}(\mathcal{R})$. Not terribly useful!
Circularity

Definition (Demonic circular coinduction)

Let G be a finite set reachability formulae. Then the set of rules $DCC(R, G)$ consists of $DSTEP(R)$ together with

\[
\frac{(t'_{\varsigma} \mid \phi'_{\varsigma} \land \phi \land \phi'')}{
(t \mid \phi \land \neg \phi'') \Rightarrow \phi'}
\]

\[
\frac{(t \mid \phi) \Rightarrow \phi'}{
\text{[circ]} \ M^\Sigma \models \phi' \iff (\exists \text{var}(t_{\varsigma}, \phi_{\varsigma}))(t = ? t_{\varsigma} \land \phi_{\varsigma})
\text{(t}_{\varsigma} \mid \phi_{\varsigma}) \Rightarrow (t'_{\varsigma} \mid \phi'_{\varsigma}) \in G
\}
\]

where the variables in $(t_{\varsigma} \mid \phi_{\varsigma}) \Rightarrow (t'_{\varsigma} \mid \phi'_{\varsigma})$ are renamed such that $\text{var}(t_{\varsigma}, \phi_{\varsigma}) \cap \text{var}(t, \phi) = \emptyset$.
Circularity

Definition (Demonic circular coinduction)

Let G be a finite set reachability formulae. Then the set of rules $\text{DCC}(\mathcal{R}, G)$ consists of $\text{DSTEP}(\mathcal{R})$ together with

\[
\begin{align*}
(t'_c | \phi'_c \land \phi \land \phi'') & \Rightarrow \varphi', \\
(t | \phi \land \neg \phi'') & \Rightarrow \varphi' \quad \text{[circ]} \\
(t | \phi) & \Rightarrow \varphi' \\
M^\Sigma \models \phi'' & \iff (\exists \text{var}(t_c, \phi_c))(t = t'_c \land \phi_c) \\
(t_c | \phi_c) & \Rightarrow (t'_c | \phi'_c) \in G
\end{align*}
\]

where the variables in $(t_c | \phi_c) \Rightarrow (t'_c | \phi'_c)$ are renamed such that $\text{var}(t_c, \phi_c) \cap \text{var}(t, \phi) = \emptyset$.

Definition

Let PT be a proof tree of $\varphi \Rightarrow \varphi'$ under $\text{DCC}(\mathcal{R}, G)$. A [circ] node in PT is *guarded* iff it has as ancestor a [der\forall] node. PT is *guarded* iff all its [circ] nodes are guarded.
Soundness of Circularity

Definition
We write $(R, G) \vdash^\forall \varphi \Rightarrow \varphi'$ iff there is a proof tree of $\varphi \Rightarrow \varphi'$ under $DCC(R, G)$ that is guarded. If F is a set of reachability formulae, we write $(R, G) \vdash^\forall F$ iff $(R, G) \vdash^\forall \varphi \Rightarrow \varphi'$ for all $\varphi \Rightarrow \varphi' \in F$.
Soundness of Circularity

Definition
We write \((\mathcal{R}, G) \vdash_{\forall} \varphi \Rightarrow \varphi'\) iff there is a proof tree of \(\varphi \Rightarrow \varphi'\) under \(\text{DCC}(\mathcal{R}, G)\) that is guarded. If \(F\) is a set of reachability formulae, we write \((\mathcal{R}, G) \vdash_{\forall} F\) iff \((\mathcal{R}, G) \vdash_{\forall} \varphi \Rightarrow \varphi'\) for all \(\varphi \Rightarrow \varphi' \in F\).

[Circularity Principle]
Let \(\mathcal{R}\) be a constrained rule system and \(G\) a set of goals. If \((\mathcal{R}, G) \vdash_{\forall} G\) then \(\mathcal{R} \vdash_{\forall} G\).
Demo

http://github.com/ciobaca/rmt/
Conclusions

1. cleaner semantics of constrained rewrite systems;
2. coinductive approach to reachability properties;
3. coinductive proof system for reachability formulae inspired from our previous approaches to partial program correctness [1, 2];
4. implementation.
