Clustering: Evolutionary Approaches

PhD Candidate
Mihaela Elena Breaban

Supervisor
Prof. PhD Henri Luchian

Thesis committee
Prof. PhD Dan Dumitrescu, Babes-Bolyai University, Cluj-Napoca, Romania
Prof. PhD Dan Simovici, University of Massachusetts at Boston, USA
Prof. PhD Daniela Zaharie, West University of Timisoara, Romania

A thesis submitted to “Alexandru Ioan Cuza” University for the degree of Philosophiae Doctor (PhD)
January 2011
Acknowledgements

Beyond the unsupervised learning context addressed in the thesis, the process that leaded towards its accomplishment was thoroughly supervised. I express my deepest gratitude to my advisor, Professor Henri Luchian, for his constant encouragement and guidance on my study, research and career. His insight into evolutionary computation and clustering constitutes the milestone for my PhD research. His support goes far beyond valuable teaching, advice and inspiration; he seeds the sense of scientific reasoning. It is a privilege to work in the open and competitive atmosphere he creates for the GA research group in our department, guiding us all with just the right mixture of affirmation and criticism.

I would also like to express my sincere gratitude to Professor Cornelius Croitoru for his valuable teachings during my years of study, for his useful advice and research ideas. I owe to him the turn towards the academic path I’m walking today.

I am grateful to Professor Liviu Ciortuz who provided the first insight into the wide field of data mining and supplied me constantly with important information materials. I am indebted to all my professors at the Faculty of Computer Science in Iasi who provided me with a solid foundation during college and master. I particularly thank to the council of the Faculty led by Professor Gheorghe Grigoras for constantly supporting my participation at scientific events.

I am indebted to Professor Dan Simovici for warmly hosting me at the University of Massachusetts at Boston for a research period that opened new perspectives. I am grateful for his interesting lectures held in Iasi every year, for his valuable teachings during my stay in Boston, for his wise advice and inspiring research ideas.

I am thankful to Professor Byoung-Tak Zhang who provided me with the opportunity to do research within the Biointelligence research lab at Seoul National University.

I express my gratitude to professors Daniela Zaharie, Dan Dumitrescu, Kenneth de Jong and Zbigniew Michalewicz for the opportunity to attend their inspiring lectures
and for the useful discussions during the doctoral summer schools organized each year by professor Luchian in Iasi.

I would like to thank Julia Handl and Joshua Knowles for supplying us with the data sets investigated in the experimental sections of the thesis and with the results they obtained, making thus possible all the reported comparisons with their extensive studies in unsupervised feature selection and clustering.

A warm thank you goes to Madalina Ionita, Lenuta Alboaie, Elena and Andrei Bautu, Vlad Radulescu. Their contributions go beyond fruitful collaboration and discussions; their friendship means a lot to me. I thank all my colleagues for the friendly and pleasant atmosphere that makes me enjoy every work day.

I thank my family for their infinite patience, support and love.
Abstract

This thesis is concerned with exploratory data analysis by means of Evolutionary Computation techniques. The central problem addressed is cluster analysis. The main challenges arisen from the unsupervised nature of this problem are investigated.

Clustering is a problem lacking a formal general-accepted objective. This justifies the multitude of approaches proposed in literature. A review of the main clustering algorithms and clustering objectives is made. A new approach that takes into account both global and local distribution in data is proposed with the aim of combining the strengths of two different clustering paradigms: centroid-based approaches and density-based approaches.

The use of distance metrics in cluster analysis and their impact on the solution space are discussed. The field of metric learning is reviewed. Special emphasis is placed on feature selection methods that aim at extracting a lower-dimensional manifold from data, manifold that maximizes the clustering tendency in data. A wrapper scenario based on multi-modal search evolutionary algorithms is investigated in order to identify feature subsets relevant for the clustering task. A new clustering criterion is formulated able to offer a ranking of partitions derived in feature subspaces of different cardinalities.

Particular clustering problems are approached with Evolutionary Computation techniques. Community detection in social networks based on local trust metrics raise a new challenge to clustering analysis: the underlying feature space can not be transformed straightforward into a metric space. Graph clustering is formulated as a multi-objective problem in order to address important applications in VLSI design.
Contents

| List of tables | viii |
| List of figures | x |

1 Introduction

1.1 Research context ... 2
1.2 Contributions of the thesis 3
1.3 Structure of the thesis 4
1.4 Publications associated with the thesis 5

2 Evolutionary Computation

2.1 General principles ... 7
2.2 Evolutionary Algorithms 8
 2.2.1 Terminology ... 8
 2.2.2 Directions in Evolutionary Algorithms 9
 2.2.3 Genetic Algorithms 10
2.3 Swarm Intelligence ... 15
 2.3.1 Particle Swarm Optimization 16

3 Clustering

3.1 Learning from data ... 20
3.2 The clustering problem 21
 3.2.1 A formal definition 22
 3.2.2 Learning contexts 22
 3.2.3 Challenges ... 23
3.3 Algorithms .. 24
 3.3.1 Hierarchical techniques 24
 3.3.2 Relocation algorithms 25
 3.3.3 Probabilistic methods 27
3.3.4 Density-based methods .. 27
3.3.5 Grid-based methods .. 28
3.3.6 Ensemble clustering .. 28
3.4 Optimization criteria .. 29
3.4.1 Known number of clusters ... 30
3.4.2 Unknown number of clusters ... 32
3.5 Solution evaluation ... 34

4 Evolutionary Computation in clustering 36
4.1 Clustering techniques based on EC 36
4.1.1 Relocation approaches .. 37
4.1.2 Density-based approaches .. 39
4.1.3 Grid-based approaches .. 39
4.1.4 Manifold learning ... 40
4.2 Introducing the Connectivity Principle in k-Means 40
4.2.1 Motivation ... 41
4.2.2 The Hybridization ... 42
4.2.3 Experiments .. 45
4.2.4 Comparative study ... 51
4.2.5 Concluding Remarks and Future Work 54
4.3 Community detection in social networks 54
4.3.1 Motivation ... 55
4.3.2 The engine ratings of a trust and reputation system 57
4.3.3 The algorithm .. 58
4.3.4 Experiments .. 62
4.3.5 Applications to social networks 68
4.3.6 Concluding Remarks and Future Work 69
4.4 Genetic-entropic clustering .. 69
4.4.1 Graph clustering ... 70
4.4.2 A multi-objective formulation 72
4.4.3 The algorithm .. 76
4.4.4 Experiments .. 78
4.4.5 Concluding Remarks and Future Work 81

5 Metric learning ... 82
5.1 Distance metrics in clustering ... 82
5.2 Metric learning contexts ... 88
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Parameters for the artificial data sets</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>The number of iterations for standard k-Means and the number of additional iterations performed by PSO-kMeans, computed as averages over 50 runs of the algorithm.</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Results for unsupervised clustering. For each data set and each algorithm, the ARI and the number of clusters are reported for three partitions: the partition with the highest Adjusted Rand Index (ARI) score, the best partition under Silhouette Width (SW) and the best partition under criterion CritC.</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>The ARI computed for the datasets presented in Figure 2: our method (PSO-kMeans), standard k-Means, the clustering method proposed in Cui et al. (2005) (PSO), 4 hierarchical algorithms and a density-based method.</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Average Adjusted Rand Index and the average number of clusters for different classes of problem instances</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparative Results</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>Results for feature selection with and without the cross-projection normalization</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Results for feature weighting/selection without cross-projection normalization but with bounds enforced on the minimum number of feature</td>
<td>112</td>
</tr>
<tr>
<td>6.3</td>
<td>Results for unsupervised feature selection as averages over 10 runs for each data set: the ARI score and the number of clusters k for the best partition, the sensitivity and the specificity of the selected feature subspace.</td>
<td>118</td>
</tr>
</tbody>
</table>
6.4 Results on real data sets. The average error rate for 10 runs is reported for k-Means and METIS algorithms applied on the original data set and for the ensemble procedure introduced in this section (MNC-METIS) . . . 121

7.1 Results on synthetic and real data sets - partitions obtained with the k-Means algorithm. The ARI score and the number of clusters k reported here, are computed as averages over 20 runs per data set. For each data set, four partitions are reported: the one with the highest ARI value (Best) and the partition found by Davis-Bouldin Index (DB), Silhouette Width (SW) and CritCF function, respectively. 138

7.2 Results for feature selection obtained with the MNC-GA algorithm using CritCF, on data sets with gaussian noise (100 gaussian features). The ARI score for the best partition, the number of clusters k, the number of features m, the recall and the precision of the selected feature space are computed as averages over 20 runs on each data set. 140

7.3 Results for feature selection obtained with the two versions of the Forward Selection algorithm using CritCF on data sets with gaussian noise (100 gaussian features). The ARI score for the best partition, the number of clusters k, the number of features m, the recall and the precision of the selected feature space are listed. 142

7.4 Results for feature selection on real data sets. The first line for each data set presents the performance of k-Means on the initial data set with the correct number of clusters. The second line presents the performance of MNC-GA for unsupervised wrapper feature selection: the ARI score, the number of clusters k identified and the number of features m selected. . . 145
List of figures

2.1 A generic Genetic Algorithm .. 11
2.2 One point crossover .. 13
2.3 Basic PSO .. 18
4.1 PSO-kMeans ... 43
4.2 Comparative results for supervised clustering: the first box plot in each group corresponds to the standard k-Means and the second box plot in each group corresponds to PSO-kMeans. Each box plot from the groups *d-*c correspond to 10 problem instances × 50 runs of the algorithm with random initializations (a total of 500 values of the Adjusted Rand Index). In case of real data sets the box plots present the values over 50 runs of the algorithms with random initializations. .. 48
4.3 Data sets imposing different challenges to clustering methods 51
4.4 Results obtained with standard k-Means 52
4.5 Results for hierarchical algorithms on elongated data 53
4.6 The model extension: ratings associated to groups 58
4.7 The graphs representing a community of 14 users; A: the graph containing the explicit ratings; B: the graph containing both explicit and implicit ratings; the continue arcs represent the explicit ratings and the dashed arcs the implicit ratings. .. 62
4.8 Two different mappings corresponding to different initialization 63
4.9 Mapping for the American College Football network; the teams are represented as points in the two-dimensional space; well-defined clusters are identified; the clusters are specified in brackets followed by the actual membership of the teams.

4.10 PESA-II

4.11 The set of non-dominated solutions for various datasets. The horizontal axis corresponds to criterion 4.4 expressing how unbalanced the clusters are and the vertical axis corresponds to criterion 4.5 expressing the average cut size. The best match to the real partition is marked as a square. The partition corresponding to the minimum score computed as sum between the two objectives is shown as a triangle.

5.1 Negative effect of scaling on two well-separated clusters.

5.2 Clusters obtained with k-Means using the Manhattan and Mahalanobis metrics (left) and the Euclidean metric (right).

5.3 Distance metrics: Manhattan, Euclidean and Chebyshev at left, Mahalanobis at right.

5.4 Principal components.

6.1 One iteration in MNC GA for unsupervised feature selection.

6.2 Feature ranking on 10d-4c instances.

6.3 Feature ranking on 10d-10c instances.

6.4 ARI - comparative results. **top:** the three lines denoted *MO-* correspond to the multi-objective algorithm investigated in Handl and Knowles (2006a) within a wrapper scenario with several clustering criteria used as the primary objective: Silhouette Width, Davies Bouldin and Davies-Bouldin normalized with respect to the number of features; *Entropy* corresponds to the multi-objective algorithm investigated in Handl and Knowles (2006a) within a filter scenario which is based on an entropy measure; MNC-GA corresponds to the method investigated in the current study. **bottom:** the unsupervised scenario and the two semi-supervised approaches.
7.1 The within-cluster inertia W, between-cluster inertia B and their sum plotted for locally optimal partitions obtained with k-means over different numbers of clusters. .. 126

7.2 Left: function F plotted for partitions obtained with k-Means over different numbers of clusters, for data sets with 2, 4, 10 and 20 features; Right: function F is penalized introducing at exponent k (dotted lines) and $le(k) = log_2(k+1) + 1$ (continuous lines). .. 127

7.3 Forward Selection 1: Input - the set of all features F; Output - a subset S containing relevant features .. 133

7.4 Results for the datasets containing Gaussian noise. Adjusted Rand Index (top) and F-Measure (bottom) for the best partition obtained in the feature subspace extracted with various methods: the three red lines correspond to the MNC-GA and the two versions of Forward selection algorithm using CritCF; the two blue lines correspond to the multi-objective algorithm investigated in [Handl and Knowles (2006a)] using Silhouette Widthand Davies Bouldin as the primary objective. The yellow line corresponds to a filter method investigated in [Handl and Knowles (2006a)] using an entropy measure. The gray line corresponds to the best partition that can be obtained with k-Means run on the optimal standardized feature subset. .. 141

7.5 The Adjusted Rand Index for the partitions obtained as follows: supervised clustering on the relevant features, unsupervised clustering on the relevant features using CritCF, unsupervised wrapper feature selection using CritCF on datasets containing 100 gaussian features and on datasets containing 100 uniform features. Each boxplot summarizes 10 values corresponding to the 10 problem instances in each class. .. 142

7.6 Results for MNC-GA on real data. The selected features are marked in gray ... 146
Chapter 1

Introduction

1.1 Research context

Cluster analysis is an exploratory data analysis technique aiming at getting insight into data. Adopting an informal definition, clustering can be stated as the problem of identifying natural or interesting groups in data. It is called unsupervised learning due to the lack of any information on cluster membership: no particular assignments of data items are available and usually the number of clusters is not known in advance.

Cluster analysis is ubiquitous in life sciences: *taxonomy* is the term used to denote the activity of ordering and arranging the information in domains like botany, zoology, ecology, etc. The biological classification dating back to the XVIIIth century (Carl Linne) and still valid, is just a result of cluster analysis. Clustering constitutes the step that antedcede classification. Classification aims at assigning new objects to a set of existing clusters/classes; from this point of view it is the 'maintenance' phase, aiming at updating a given partition.

Clustering and classification are two problems intensively investigated in the field of Machine Learning with the aim of designing automatic methods. In this context clustering is called unsupervised classification; to avoid any confusion, the problem aiming at assigning objects to existing classes is called supervised classification.

This thesis is concerned with automatic unsupervised classification - in short, clustering. The research in this direction records a long and rich trajectory. First heuristics automating the discovery of clusters in data appeared in '60s, when the use of computers spread out. Thousands of papers proposing new clustering algorithms and describing
concrete applications have been published since then. Nevertheless, after more than 50 years, we still find ourselves in an effervescent field. This speaks up for the wide applicability of the problem and the difficulty of designing a general purpose clustering algorithm.

1.2 Contributions of the thesis

This thesis identifies and addresses several challenges in clustering. It steps into the main phases of cluster analysis: the use of distance metrics in clustering is discussed and the necessity for metric learning is unveiled, popular clustering algorithms and clustering criteria are reviewed, solution validation criteria are presented.

The main contributions of the thesis relative to the amount of existent work in the field of clustering can be summarized as follows:

• a systematic survey on the use of evolutionary computation techniques for clustering (Chapter 4);

• a new algorithm that combines the strengths of two traditional clustering paradigms - density-based approaches and centroids-based methods - taking into account both the local and global distribution in data (Section 4.2);

• an empirical investigation of the most popular unsupervised clustering criteria is made and a new unsupervised clustering criterion is proposed (Section 7.2);

• a multi-modal search algorithm is designed to quantify the relevance of features for clustering; unsupervised feature weighting, ranking and selection are approached in this context and an extension to the semi-supervised framework is investigated (Chapter 6);

• a previously proposed scheme aiming at eliminating the bias with regard to the cardinality of the feature space (the cross-projection normalization) is investigated in a wider context (Chapter 6);

• a method that integrates unsupervised feature selection with ensemble clustering is proposed in order to deliver more accurate partitions (Section 6.4);

• simultaneous unsupervised feature selection and unsupervised clustering are approached as optimization problems by means of global optimization heuristics;
this end, an objective function is proposed capable of efficiently guiding the search for significant features and simultaneously for the respective optimal partitions (Chapter 7):

- particular clustering problems are addressed with Evolutionary Computation techniques: community detection within social networks whose functionality comes from local trust metrics (Section 4.3) and a multi-objective graph partitioning problem (Section 4.4).

1.3 Structure of the thesis

The remainder of the thesis is structured as follows.

Chapter 2 introduces the framework of Evolutionary Computation. The general principles shared by the Evolutionary Computation methods are stated and the main two paradigms components of the Evolutionary Computation field - Evolutionary Algorithms and Swarm Intelligence are described. Emphasis is placed on the Genetic Algorithms and Particle Swarm Optimization.

Chapter 3 presents the clustering problem highlighting the main difficulties deriving from its unsupervised nature. State-of-the-art algorithms and solution validation criteria are analytically reviewed in order to identify the underlying clustering concept and consequently the applicability context.

Chapter 4 surveys existing clustering methods based on Evolutionary Computation techniques and presents new algorithms. A general-purpose clustering algorithm is designed to introduce the connectivity principle within k-Means in section 4.2. Community detection in social networks is investigated in 4.3 and a graph clustering problem is approached in a multi-objective framework in section 4.4.

Chapter 5 reviews the most popular distance metrics used in clustering. Their influence on the result of cluster analysis is highlighted. Several guidelines in choosing the appropriate metric are formulated after surveying experimental studies reported in literature involving data from various domains. The most popular manifold learning techniques are reviewed and are related to cluster analysis. Feature weighting and feature selection approaches proposed in literature in the context of cluster analysis are presented.
Unsupervised feature weighting and selection are approached in Chapter 6 in a wrapper manner by means of a multi-modal genetic algorithm. The scenario is extended to the case of semi-supervised clustering. Feature selection is integrated with ensemble clustering.

Chapter 7 proposes a new clustering criterion which is largely unbiased with respect to the number of clusters and which provides at the same time a ranking of partitions in feature subspaces of different cardinalities. Therefore, this criterion is able to provide guidance to any heuristic that simultaneously searches for both relevant feature subspaces and optimal partitions.

1.4 Publications associated with the thesis

Part of the present thesis is built on the following publications:

• Mihaela Breaban, Henri Luchian, Dan Simovici, *Genetic-Entropic Clustering*, EGC 2011 (to appear)

Other published work referred to in the thesis:

Chapter 2

Evolutionary Computation

This chapter serves as a background for the algorithmic framework developed in this thesis.

Nature has been continuously offering us optimization models. In the last decades, some of these models served as inspiration for the development of computational methods that aim at overcoming the increasing complexity of the problems addressed by the modern human society. In this context, this chapter presents the Evolutionary Computation field in a top-down manner. First, the general principles shared by the Evolutionary Computation methods are stated. Then, two of the main paradigms components of the Evolutionary Computation field - Evolutionary Algorithms and Swarm Intelligence are described. Two particular optimization methods, exponents of the two paradigms used across this thesis are detailed: the Genetic Algorithms and Particle Swarm Optimization.

2.1 General principles

Evolutionary Computation (EC) comprises a set of soft-computing paradigms designed to solve optimization problems. In contrast with the rigid/static models of hard computing, these nature-inspired models provide self-adaptation mechanisms which aim at identifying and exploiting the properties of the instance of the problem being solved.

EC methods are iterative algorithms. They work with a population of candidate solutions which evolve in order to adapt to the "environment" defined by a "fitness function". They involve a degree of randomness which classify them as probabilistic methods. Several approximate good solutions are returned.
An important advantage over classical computational methods is their extended usability. EC methods are general-purpose heuristics that can be used to solve diverse optimization problems, extract patterns from data in the machine learning field (eg. classifier systems) or can be useful tools in the design of complex systems.

There exist several heuristics which comply to the guidelines listed above. Most of them can be grouped in two major classes: Evolutionary Algorithms (EA) and Swarm Intelligence (SI) algorithms. The main differences between the two paradigms come as result of their different sources of inspiration. EA methods have roots in biological evolution while SI methods simulate the behavior of decentralized self-organized systems. The current thesis makes use of techniques of both types; therefore, the next two sections describe in detail these two paradigms.

2.2 Evolutionary Algorithms

Evolutionary algorithms are simplified computational models of the evolutionary processes that occur in nature. They are search methods implementing principles of natural selection and genetics.

2.2.1 Terminology

Evolutionary algorithms use a vocabulary borrowed from genetics. They simulate the evolution across a sequence of generations (iterations within an iterative process) of a population (set) of candidate solutions. A candidate solution is internally represented as a string of genes and is called chromosome or individual. The position of a gene in a chromosome is called locus and all the possible values for the gene form the set of alleles of the respective gene. The internal representation (encoding) of a candidate solution in an evolutionary algorithm form the genotype; this information is processed by the evolutionary algorithm. Each chromosome corresponds to a candidate solution in the search space of the problem which represents its phenotype. A decoding function is necessary to translate the genotype into phenotype. If the search space is finite, it is desirable that this function should satisfy the bijection property in order to avoid redundancy in chromosomes encoding (which would slow down the convergence) and to ensure the coverage of the entire search space.
The population maintained by an evolutionary algorithm evolves with the aid of genetic operators, that simulate the fundamental elements in genetics: mutation consists in a random perturbation of a gene while crossover aims at exchanging genetic information among several chromosomes. The chromosome subjected to a genetic operator is called parent and the resulted chromosome is called offspring.

A process called selection involving some degree of randomness selects the individuals to breed and create offsprings, mainly based on individual merit. The individual merit is measured using a fitness function which quantifies how fitted the candidate solution encoded by the chromosome is for the problem being solved. The fitness function is formulated based on the mathematical function to be optimized.

The solution returned by an evolutionary algorithm is usually the most fitted chromosome in the last generation.

2.2.2 Directions in Evolutionary Algorithms

First efforts to develop computational models of evolutionary systems date back to 1950s Bremermann; Fraser. Several distinct interpretations, which are widely used nowadays were independently developed later. The main differences between these classes of evolutionary algorithms consist in solution encoding, operators implementation and selection schemes.

Evolutionary programming crystallized in 1963 in the USA at San Diego University, when Lawrence J. Fogel [Fogel et al. (1966)] generated simple programs as simple finite-state machines; this technique was developed further by his son David Fogel (1992). A random mutation operator was applied on state-transition diagrams and the best chromosome was selected for survival.

Evolutionary strategies (ES) were introduced in 1960s when Hans-Paul Schwefel and Ingo Rechenberg, working on a problem from mechanics involving shape optimization, designed a new optimization technique because existing mathematical methods were unable to provide a solution. The first ES algorithm was initially proposed by Schwefel in 1965 and developed further by Rechenberg [Rechenberg (1973)]. Their idea is known as Rechenberg’s conjecture, and states the fundamental justification for the use of evolutionary techniques: ”Natural evolution is, or comprises, a very efficient optimization process, which, by simulation, can conduct to solving difficult optimization processes”. Their method was designed to solve optimization problems with continuous variables; it
used one candidate solution and applied random mutations followed by the selection of the fittest. Evolutionary strategies were later strongly promoted by Thomas Bäck \cite{Back1996} who incorporated the idea of population of solutions.

Genetic algorithms were developed by John Henry Holland in 1973 after years of study of the idea of simulating the natural evolution. These algorithms model the genetic inheritance and the Darwinian competition for survival. Genetic algorithms are described in more detail in section \ref{sec:genetic-algorithms}.

Genetic Programming (GP) is a specialized form of a genetic algorithm. The specialization consists in manipulating a very specific type of encoding and, consequently, in using modified versions of the genetic operators. GP was introduced by Koza in 1992 \cite{Koza1992} in an attempt to perform automatic programming. GP manipulates directly phenotypes, which are computer programs (hierarchical structures) expressed as trees. It is currently intensively used to solve symbolic regression problems.

Differential evolution \cite{Storn1997} is a more recent class of evolutionary algorithms whose operators are specifically designed for numerical optimization.

An in-depth analysis under a unified view of these distinct directions in Evolutionary algorithms is presented in \cite{Jong2006}.

2.2.3 Genetic Algorithms

Genetic algorithms \cite{Holland1998} are the most well-known and the most intensively used class of evolutionary algorithms.

A genetic algorithm performs a multi-dimensional search by means of a population of candidate solutions which exchange information and evolve during an iterative process. The process is illustrated by the pseudo-code in \ref{sec:genetic-algorithms}.

In order to solve a problem with a genetic algorithm, one must define the following elements:

- an encoding for candidate solutions (the genotype);
- an initialization procedure to generate the initial population of candidate solutions;
- a fitness function which defines the environment and measures the quality of the candidate solutions;
Figure 2.1: A generic Genetic Algorithm

\[
\begin{align*}
t &:= 0 \\
\text{Initialize } P_0 \\
\text{Evaluate } P_0 \\
\text{while halting condition not met do} \\
\quad t &:= t + 1 \\
\quad \text{select } P_t \text{ from } P_{t-1} \\
\quad \text{apply crossover and mutation in } P_t \\
\quad \text{evaluate } P_t \\
\text{end while}
\end{align*}
\]

- a selection scheme;
- genetic operators (mutation and crossover);
- numerical parameters.

The encoding is considered to be the main factor that determines the success or failure of a genetic algorithm.

The standard encoding in GAs consists in binary strings of fixed length. The main advantage of this encoding is offered by the existence of a theoretical model explaining (the Schema theorem) the search process until convergence. Another advantage shown by Holland is the high implicit parallelism in the genetic algorithm. A widely used extension to the binary encoding is gray coding.

Unfortunately, for many problems this encoding is not a natural one and it is difficult to be adapted. However, GAs themselves evolved and the encoding extended to strings of integer and real numbers, permutations, trees, multi-dimensional structures. Decoding the chromosome onto a candidate solution to the problem sometimes necessitates problem-specific heuristics.

Important factors that need to be analyzed with regard to the encoding are the size of the search space induced by a representation and the coverage of the phenotype space: whether the phenotype space is entirely covered and/or reachable, whether the mapping from genotype to phenotype is injective, or ‘degenerate’, whether particular (groups of) phenotypes are over-represented [Radcliffe et al. (1995)]. Also, the ‘heritability’ and ‘locality’ of the representation under crossover and mutation, need to be studied [Raidl and Gottlieb (2005)].
The initialization of the population is usually performed randomly. There exist approaches which make use of greedy strategies to construct some initial good solutions or other specific methods depending on the problem.

The fitness function is constructed based on the mathematical function to be optimized. For more complex problems the fitness function may involve very complex computations and increase the intrinsic polynomial complexity of the GA.

Several probabilistic procedures based on the fitness distribution in population can be used to select the individuals to survive in the next generations and produce offsprings. All these procedures encourage to some degree the survival of the fittest individuals, allowing at the same time that the worst adapted individual survive and contribute with local information (short-length substrings) to the structure of the optimal solution. The most essential feature which differentiates them is the selection pressure: the degree to which the better individuals are favored; the higher the selection pressure, the more the better individuals are favored. The selection pressure has a great impact on the diversity in population and consequently on the convergence of GAs. If the selection pressure is too high, the algorithm will suffer from insufficient exploration of the search space and premature convergence occurs, resulting in sub-optimal solutions. On the contrary, if the selection pressure is too low the algorithm will unnecessarily take longer time to reach the optimal solution. Various selection schemes were proposed and studied from this perspective. They can be grouped into two classes: proportionate-based selection and ordinal-based selection. Proportionate-based selection takes into account the absolute values of the fitness. The most known procedures in this class are: roulette wheel (John Holland, 1975) and stochastic universal sampling (James Baker, 1989). Ordinal based selection takes into account only the relative order of individuals according to their fitness values. The most used procedures of this kind are the linear ranking selection (Baker, 1985) and the tournament selection (Goldberg, 1989).

New individuals are created in population with the aid of two genetic operators: crossover and mutation.

The classical crossover operator aims at exchanging genetic material between two chromosomes in two steps: a locus is chosen randomly to play the role of a cut point and splits each of the two chromosomes in two segments; then two new chromosomes are generated by merging the first segment from the first chromosome with the second segment from the second chromosome and vice-versa. This operator is called in literature one-point crossover and is presented in \(2.2\). Generalizations exist to two, three or more
cut-points. Uniform crossover builds sequentially the offspring by copying at each locus the allele randomly chosen from one of the two parents.

Various constraints imposed by real-world problems led to various encodings for candidate solutions; these problem-specific encodings subsequently necessitate the redefinition of crossover. Thus, algebraic operators are implied for the case of numerical optimization with real encoding; an impressive number of papers focused on permutation-based encodings proposing various operators and performing comparative studies. It is now a common procedure to wrap a problem-specific heuristic within the crossover operator (i.e. Ionita et al. (2006b) propose new operators for constraint satisfaction; chapter 4 of this thesis presents new operators in the context of clustering). Crossover in GAs stands at the moment for any procedure which combines the information encoded within two or several chromosomes to create new and hopefully better individuals.

Mutation is a unary operator designed to introduce variability in population. In the case of binary GA the mutation operator modifies each gene (from 0 to 1 or from 1 to 0) with a given probability. As in the case of crossover, mutation takes various forms depending on the problem and the encoding used.

When designing a GA, decisions have to be made with regard to several parameters: population size, crossover and mutation rate, a halting criterion. Except some general considerations (i.e. high mutation rate in first iterations, decreasing during the run, combined with a complementary evolution for crossover), finding the optimum parameter values comes more to empiricism than to abstract studies.

Variations were brought to the classical GA not only at the encoding and operators level. In order to face the challenges imposed by real-world problems, modifications are also recorded in the general scheme of the algorithm.

GAs are generally preferred to trajectory-based meta-heuristics (i.e. Hill-Climbing, Simulated Annealing, Tabu Search) in multi-modal environments, mostly due to their increased exploration capabilities. However, a classical GA still can be trapped in a local optimum due to premature attraction of the entire population into its basin.

Figure 2.2: One point crossover
of attraction. Therefore, the main concern of GAs for multi-modal optimization is to maintain diversity for a longer time in order to detect multiple (local) optima. To discover the global optima, the GA must be able to intensify the search in several promising regions and eventually encourage simultaneous convergence towards several local optima. This strategy is called niching: the algorithm forces the population to preserve subpopulations, each subpopulation corresponding to a niche in the search space; different niches represent different (local) optimal regions.

Several strategies exist in literature to introduce niching capabilities into evolutionary algorithms. Deb and Goldberg (1989) propose fitness sharing: the fitness of each individual is modified by taking into account the number and fitness of its closely ranged individuals. This strategy determine the number of individuals in the attraction basin of an optimum to be dependent on the height of that peak.

Another widely used strategy is to arrange the candidate solutions into groups of individuals that can only interact between themselves. The island model evolves independently several populations of candidate solutions; after a number of generations individuals in neighboring populations migrates between the islands [Whitley et al. (1998)].

There are techniques which divide the population, based on the distances between individuals (the so-called radii-based multi-modal search GAs). Genetic Chromodynamics [Dumitrescu (2000)] introduces a set of restrictions with regard to the way selection is applied or the way recombination takes place. A merging operator is introduced which merges very similar individuals after perturbation takes place.

De Jong introduced a new scheme of inserting the descendants into the population, called the crowding method [De Jong (1975)]. To preserve diversity, the offspring replace only similar individuals in the population. The current thesis makes use of the crowding scheme to perform a multi-modal search in the context of feature selection; the algorithm employed [Vemuri and Cedeno (1995)] implements the crowding scheme both at selection and at replacement and is presented in Chapter 6.

A field of intensive research within the evolutionary computation community, is multi-objective optimization. Most real-world problems necessitate the optimization of several, often conflicting objectives. Population-based optimization methods offer an elegant and very efficient approach to this kind of problems: with small modifications of the basic algorithmic scheme, they are able to offer an approximation of the Pareto optimal solution set. While moving from one Pareto solution to another, there is always a certain amount of sacrifice in one objective(s) to achieve a certain amount
of gain in the other(s). Pareto optimal solution sets are often preferred to single solutions in practice, because the trade-off between objectives can be analyzed and optimal decisions can be made on the specific problem instance.

[Zitzler et al. (2000)] formulate three goals to be achieved by multi-objective search algorithms:

- the Pareto solution set should be as close as possible to the true Pareto front,
- the Pareto solution set should be uniformly distributed and diverse over of the Pareto front in order to provide the decision-maker a true picture of trade-offs,
- the set of solutions should capture the whole spectrum of the Pareto front. This requires investigating solutions at the extreme ends of the objective function space.

GAs have been the most popular heuristic approach to multi-objective design and optimization problems mostly because of their ability to simultaneously search different regions of a solution space and find a diverse set of solutions. The crossover operator may exploit structures of good solutions with respect to different objectives to create new nondominated solutions in unexplored parts of the Pareto front. In addition, most multi-objective GAs do not require the user to prioritize, scale, or weigh objectives. There are many variations of multi-objective GAs in the literature and several comparative studies. As in multi-modal environments, the main concern in multi-objective GAs optimization is to maintain diversity throughout the search in order to cover the whole Pareto front. [Konak et al. (2006)] provide a survey on the most known multi-objective GAs, describing common techniques used in multi-objective GA to attain the three above-mentioned goals.

A multi-objective GA known in literature as PESA II [Corne et al. (2001)] is described in detail in section 4.4 where it is used to solve a graph-clustering problem.

2.3 Swarm Intelligence

Swarm Intelligence (SI) is a computational paradigm inspired from the collective behavior in auto-organized decentralized systems. It stipulates that problem solving can emerge at the level of a collection of agents which are not aware of the problem itself, but collective interactions lead to the solution. Swarm Intelligence systems are typically made up of a population of simple autonomous agents interacting locally with
one another and with their environment. Although there is no centralized control, the local interactions between agents lead to the emergence of global behavior. Examples of systems like this can be found in nature, including ant colonies, bird flocking, animal herding, bacteria molding and fish schooling.

The most successful SI techniques are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). In ACO [Dorigo and Stützle (2004)] artificial ants build solutions walking in the graph of the problem and (simulating real ants) leaving artificial pheromone so that other ants will be able to build better solutions. ACO was successfully applied to an impressive number of optimization problems. PSO is an optimization method initially designed for continuous optimization; however, it was further adapted to solve various combinatorial problems. PSO is presented in more detail in the next section.

2.3.1 Particle Swarm Optimization

The PSO model was introduced in 1995 by J. Kennedy and R.C. Eberhart, being discovered through simulation of a simplified social model such as fish schooling or bird flocking [Kennedy and Eberhart (1995)]. It was originally conceived as a method for optimization of continuous nonlinear functions. Latter studies showed that PSO can be successfully adapted to solve combinatorial problems.

PSO consists of a group (swarm) of particles moving in the search space. The trajectory of a particle is determined by local interactions with other particles in the swarm and by the interaction with the environment. The PSO model thus adheres to the principles of the Evolutionary Cultural Model proposed by Boyd and Richerson (1985) according to which individuals of a society have two learning sources: individual learning and cultural transmission. Individual learning is efficient only in homogenous environments: the patterns acquired through local interactions with the environment are generally applicable. For heterogenous environments social learning - the essential feature of cultural transmission - is necessary.

In the PSO paradigm, the environment corresponds to the search space of the optimization problem to be solved. A swarm of particles is placed in this environment. The location of each particle corresponds therefore to a candidate solution to the problem. A fitness function is formulated in accordance with the optimization criterion to measure the quality of each location. The particles move in their environment collecting
information on the quality of the solutions they visit and share this information to the
neighboring particles in the swarm. Each particle is endowed with memory to store the
information gathered by individual interactions with the environment, simulating thus
individual learning. The information acquired from neighboring particles corresponds
to the social learning component.

In the basic version of the PSO algorithm, the formulas used to update the particles
and the procedures are inspired from and conceived for continuous spaces. Therefore,
each particle is represented by a vector x of length n indicating the position in the n-
dimensional search space and has a velocity vector v used to update the current position.
The velocity vector is computed following the rules:

- every particle tends to keep its current direction (an inertia term);
- every particle is attracted to the best position p it has achieved so far (implements
 the individual learning component);
- every particle is attracted to the best particle g in the neighborhood (implements
 the social learning component).

The velocity vector is computed as a weighted sum of the three terms above. Two
random multipliers r_1, r_2 are used to gain stochastic exploration capability while w, c_1, c_2
are weights usually empirically determined. The formulae used to update each of the
individuals in the population at iteration t are:

$$v_i^t = w \cdot v_i^{t-1} + c_1 \cdot r_1 \cdot (p_i^{t-1} - x_i^{t-1}) + c_2 \cdot r_2 \cdot (g_i^{t-1} - x_i^{t-1}) \tag{2.1a}$$

$$x_i^t = x_i^{t-1} + v_i^t \tag{2.1b}$$

Equation 2.1b generates a new position in the search space (corresponding to a
candidate solution). It can be associated to some extent to the mutation operator
in evolutionary programming. However, in PSO this mutation is guided by the past
experience of both the particle and other members of the swarm. In other words, ”PSO
performs mutation with a conscience” [Shi and Eberhart (1998)]. Considering the best
visited solutions stored in the personal memory of each individual as additional members
of the population, PSO implements a weak form of selection [Angeline (1998)].
The search for the optimal solution in PSO is described by the iterative procedure in \[2.3\]. The fitness function is denoted by \(f\) and is formulated for maximization.

![Figure 2.3: Basic PSO](image)

\[
\begin{align*}
t &:= 0 \\
\text{Initialize } x^t_i, i &\in \{1..n\} \\
\text{Initialize } v^t_i, i &\in \{1..n\} \\
\text{Store personal best } p^t_i &= x^t_i, i \in \{1..n\} \\
\text{Find neighborhood best } g^t_i &= \arg\max_{y \in N_x^t} f(y), i \in \{1..n\} \\
\text{while halting condition not met do} \\
&\quad t := t + 1 \\
&\quad \text{Update } v^t_i, i \in \{1..n\} \text{ using equation } 2.1a \\
&\quad \text{Update } x^t_i, i \in \{1..n\} \text{ using equation } 2.1b \\
&\quad \text{Update personal best } p^t_i = \arg\max (f(p^t_{i-1}), f(x^t_i)), i \in \{1..n\} \\
&\quad \text{Find neighborhood best } g^t_i = \arg\max_{y \in N_x^t} f(y), i \in \{1..n\} \\
\text{end while}
\]

Particle \(p_i\) is chosen in the basic version of the algorithm to be the best position in the problem space visited by particle \(i\). However, the best position is not always dependent only on the fitness function. Constraints can be applied in order to adapt PSO to various problems, without slowing down the convergence of the algorithm. In constrained non-linear optimization the particles store only feasible solutions and ignore the infeasible ones [Hu and Eberhart (2002b)]. In multi-objective optimization only the Pareto-dominant solutions are stored [Coello and Lechunga (2002); Hu and Eberhart (2002a)]. In dynamic environments particle \(p_i\) is reset to the current position if a change in the environment is detected [Hu and Eberhart (2001)].

The selection of particle \(g_i\) is performed in two steps: neighborhood selection followed by particle selection. The size of the neighborhood has a great impact on the convergence of the algorithm. It is generally accepted that a large neighborhood speeds-up the convergence while small neighborhoods prevent the algorithm from premature convergence. Various neighborhood topologies were investigated with regard to their impact on the performance of the algorithm [Kennedy (2002); Kennedy and Mendes (2003)]; however, as expected, there is No Free Lunch: different topologies are appropriate to different problems.

A major problem investigated in the PSO literature is the premature convergence of the algorithm in multi-modal optimization. This problem has been addressed in several papers and solutions include: addition of a queen particle [Clerc (1999)], alternation of
the neighborhood topology [Kennedy (1999)], introduction of sub-populations [Lvbjerg et al. (2001)], giving the particles a physical extension [Krink et al. (2002)], alternation between phases of attraction and repulsion [Riget and Vesterstroem (2002)], giving different temporary search goals to groups of particles [Al-kazemi and Mohan (2002)], giving particles quantum behavior [Sun et al. (2004)], the use of specific swarm-inspired operators [Breaban and Luchian (2005)].

Another crucial problem is parameter control. The values and choices for some of these parameters may have significant impact on the efficiency and reliability of the PSO. There are several papers that address this problem; in most of them, values for parameters are established through repeated experiments but there also exist attempts to adjust them dynamically, using evolutionary computation algorithms. The role played by the inertia weight was compared to that of the temperature parameter in Simulated Annealing [Shi and Eberhart (1998)]. A large inertia weight facilitates a global search while a small inertia weight facilitates a local search. The parameters c_1 and c_2 are called generically learning factors; because of their distinct roles, c_1 was named the cognitive parameter (it gives the magnitude of the information gathered by each individual) and c_2 the social parameter (it weights the cooperation between particles). Another parameter used in PSO is the maximum velocity which determines the maximum change each particle can take during one iteration. This parameter is usually proportional with the search domain.

Even if PSO was initially conceived for continuous optimization, the algorithm proved later its applicability to a wide range of combinatorial problems. Versions of binary PSO were designed [Kennedy and Eberhart (1997)] and the technique was used in integer programming [Laskari and K.E. Parsopoulos (2002)] and for permutation problems [Hu et al. (2003)]. Its efficiency was proven in even more complex environments such as multi-objective optimization [Coello and Lechunga (2002); Hu and Eberhart (2002a)], constraint optimization [Hu and Eberhart (2002b); Pulido and Coello (2004)], dynamic environments [Hu and Eberhart (2001)], constraint satisfaction [Breaban et al. (2007); Ionita et al. (2006a, 2010); Yang et al.]. The use of PSO in cluster analysis is presented in Chapter 4 of this thesis.
Chapter 3

Clustering

This chapter introduces the problem this thesis is mainly concerned with. The general framework of machine learning is unfolded to present the unsupervised context of clustering. The main difficulties raised by the unsupervised nature of the problem are highlighted. State-of-the-art algorithms and solution validation criteria are presented.

3.1 Learning from data

It is unnecessary to emphasize here the need for automatic data analysis and information extraction since it has become ubiquitous nowadays.

By data we commonly denote recorded facts. According to [Ackoff (1989)], it simply exists and has no significance beyond its existence (in and of itself). It can exist in any form, usable or not. It does not have meaning of itself. Information is processed data: semantic connections give the data a meaning. Extracting implicit, previously unknown and potentially useful information from data constitutes the object of the Data Mining field. The algorithmic framework providing automatic support for data mining is generally called Machine Learning.

Data is usually present in the raw form: records called data items are expressed as tuples (ordered sequences) of numerical/categorial values; each value in the tuple indicates the observed value of a feature. The features in a data set are also called attributes or variables.
Information can be automatically extracted by searching patterns in data. The process of detecting patterns in data is called learning from data. Depending on the pattern type, several data mining tasks can be identified.

Association rule mining aims at detecting any association among features. Association rules usually involve nonnumeric attributes; the typical application is market basket analysis, in which the items are articles in shopping carts and the associations among these purchases are sought.

Classification aims at predicting the value of a nominal feature; the feature in discussion is called the class variable. Classification is called supervised learning because the learning scheme is presented with a set of classified examples (the values for the class variable are given) from which it is expected to learn a way of classifying unseen examples.

In *numeric prediction* the outcome to be predicted is not a discrete class but a numeric quantity.

Clustering is the task of identifying natural groups in data. It is called unsupervised learning because, even if the outcome is the prediction of a class variable, there aren’t any training examples provided. Cluster analysis is exploratory or descriptive. There are no pre-specified models or hypotheses but the aim is to understand the general characteristics or structure of data. Clustering is the task investigated further in this thesis.

3.2 The clustering problem

Clustering is a problem intensively studied within the data mining community because of its wide applicability in diverse fields of sciences, engineering, economy, medicine, etc. The goal is intuitive, vaguely defined: given a data set, a partition of the data items is sought such that items belonging to the same cluster are similar while items belonging to different clusters are dissimilar. The work conducted on clustering converge only at this general level of description; as for concrete methods, there exist a wide range of clustering techniques based on different principles and yielding different results. Trying to unify the initial informal concept of clustering into an axiomatic framework governed by a unique objective function, Kleinberg (2002) obtains an impossibility result.
3.2.1 A formal definition

A formal definition of the crisp/hard version of the clustering problem can be stated as follows:
Given a set S of n data items each of which is described by m numerical attributes: $S = \{d_1, d_2, ..., d_n\}$ where $d_i = \{f_{i1}, f_{i2}, ..., f_{im}\} \in \mathbb{I}_1 \times \mathbb{I}_2 \times ... \times \mathbb{I}_m \subset \mathbb{R}^m \ \forall i = 1..n,$ find

$$C^* = \arg\max_{C \in \Omega} F(C)$$

where

- Ω is the set of all possible hard partitions C of the data set S, where each C is a hard partition if $C = \{C_1, C_2, ..., C_k\}$, $\bigcup_{i=1}^k C_i = S$ and $C_i \cap C_j = \emptyset \ \forall i, j = 1..k, \ i \neq j$, $k \in \{1, 2, ..., \text{card}(C)\}$.

- F is a function which measures the quality of each partition $C \in \Omega$ with respect to the requirement implicitly described above by the word natural: similar data items should belong to the same cluster and dissimilar items should reside in distinct clusters.

Beside crisp clustering, that requires that each object is assigned to exactly one cluster, clustering is also investigated in more relaxed forms. Rough clustering, inspired from rough sets theory (Komorowski et al. (1998); Pawlak (1995)), allows for objects to belong to more than one cluster. In fuzzy clustering (Dumitrescu et al. (2000)) each object is associated to each cluster with a probability that indicates the strength of the association between that data item and a particular cluster. Based on the probabilities computed with a fuzzy clustering procedure, one can obtain a crisp or rough partition.

The current thesis is concerned with the crisp version of clustering.

3.2.2 Learning contexts

As shown in section 3.1, clustering is an exploratory analysis technique performing unsupervised learning. However, some information can be provided by the user to the clustering algorithm, introducing some degree of supervision.

If the number of clusters p is known in advance, the problem is called supervised clustering.
When a set of constraints is provided in the form of pairs of objects which must belong to the same cluster or which must reside in different clusters, the problem is called semi-supervised clustering. The problem has lately received a lot of attention because in practice labeled data is usually available in a small proportion along with unlabeled data.

If no information is available with regard to the number of clusters nor with regard to specific assignments of objects, the problem is called unsupervised clustering.

3.2.3 Challenges

The definition of clustering leaves space to a wide choice of objective functions and similarity functions, depending strongly on the domain under investigation. The choice is rarely straightforward. Thus, several challenges can be identified in the clustering analysis.

An objective function must be formulated to quantify the degree of ”interestingness” or ”naturalness” in groupings. The literature records a lot of comparative studies regarding the impact of various objective functions on the solution, especially in the case of unsupervised clustering.

Although in clustering the data items are grouped based on similarity, the notion of similarity is seldom given in the problem statement. A distance metric is usually chosen to measure pairwise similarity, prior to applying a clustering procedure. The metric employed has a great impact on the result of the clustering algorithm since under different metrics the similarity space changes. If extra-information is available in the form of pairwise constraints of data items that must reside in the same cluster (the case of semi-supervised clustering and supervised classification), then an optimal distance metric can be learned. Unsupervised metric learning is usually performed in a pre-processing step, using methods that reduce data dimensionality through statistical analysis. A more in-depth discussion on the importance of metrics in clustering is conducted in chapter 5.

The definition in section 3.2.1 formulates clustering as an optimization problem. It is a hard optimization problem due to the huge search space. Even if the number of clusters is fixed (the case of supervised clustering), the number of possible partitions increases exponentially with the number of objects; the size of the search space in this case is given by the Stirling number of the second kind. When the number of clusters is
not known (the case of unsupervised clustering) the number of ways to partition a set of
n objects into non-empty subsets is given by the nth Bell number. For example, there
are $2 \cdot 10^{15}$ ways to partition a set of 25 objects into 5 groups, and more than $4 \cdot 10^{18}$
ways to partition them when the number of clusters is not fixed.

3.3 Algorithms

To present efficiently and in a condensed manner the existing (already wide and still
expanding) algorithmic framework for clustering, one would face the challenges of the
clustering analysis itself. There are several excellent surveys which offer a systematic
view of the field: Berkhin (2002); Duda et al. (2001); Jain et al. (1999); Xu and Wun-
sch (2005). The aim of this section is not an exhaustive enumeration of the clustering
algorithms, but a broad outline. The main classes of algorithms are succinctly intro-
duced and more attention is given to the algorithms invoked further across the thesis in
experimental studies.

3.3.1 Hierarchical techniques

Hierarchical techniques build the clusters gradually and make use of a connectivity
matrix expressing the similarity between data items. Two approaches to hierarchical
clustering exist: the agglomerative approach starts with a set of singleton clusters con-
taining only one element and iteratively merge pairs of clusters; the divisive approach
starts with a single cluster containing all objects and iteratively splits one cluster. The
result of a hierarchical clustering algorithm is a tree of clusters called dendrogram.

Merging and splitting clusters necessitate the use of a similarity function defined over
the space of clusters. Several such functions, called linkage metrics were proposed.

Usually the distance between two clusters is computed based on the set of distances
between all pairs of points, with one point in one cluster and another point in the second
cluster. Different operations on this set generate different metrics: the minimum gen-
erates the so-called single linkage metric [Sibson (1973)], the maximum corresponds to
complete linkage [Defays (1977)] and the average to average linkage [Voorhees (1986)].
Single-link and complete-link clustering reduce the assessment of cluster quality to a
single similarity between a pair of objects: the two most similar objects in single-link
clustering and the two most dissimilar objects in complete-link clustering. A measurement based on one pair cannot fully reflect the distribution of elements in a cluster. It is therefore not surprising that both algorithms often produce undesirable clusters.

Agglomerative hierarchical clustering can be formulated to optimize explicitly an objective function; i.e. [Ward (1963)] designed a hierarchical agglomerative procedure to minimize in a greedy manner the intra-cluster variance (the sum of squared distances of all points in the two classes to their mean).

As it is generally the case in clustering, the type of the linkage metric significantly affects the result because they impose different concepts of closeness. Comparative studies show that their performance is highly dependent on the data under analysis. However, average linkage and Ward’s method generally obtain compact clusters with small diameters while under single linkage the partition can degenerate into chain-like clusters with less similar objects at the ends.

Since a hierarchy is a natural method of organizing data in various domains, hierarchical clustering algorithms are the most used methods in practice. However, the space and time complexity are unfavorable \(O(n^2)\). Also, an incorrectly placed object in first iterations can not be reallocated. These methods are not incremental: if new data is available the algorithm must be restarted to incorporate it.

More sophisticated hierarchical methods exist. Sampling techniques are integrated to achieve scalability and representatives are used to replace strongly connected data items in CURE [Guha (2001)], graph partitioning is first performed on the pruned similarity graph, followed by an agglomerative procedure in CHAMELEON [Karypis et al. (1999)].

3.3.2 Relocation algorithms

Relocation algorithms do not build the clusters gradually, but given a partition (i.e. randomly generated) they relocate data items among existing clusters in order to improve them. Usually these methods require an apriori-fixed number of clusters.

The most used methods in this category make use of class representatives/centroids. These are iterative procedures, which alternate two phases: the data assignment, and the update of the centroids.

The most popular centroid-based method is **K-Means** [Forgy (1965)]. As the name suggests, each cluster is represented by the mean of the points assigned to it. The
algorithm usually starts with \(k \) randomly generated points/centroids in the feature space. In the batch version, each iteration consists in allocating all data items to the nearest centroid; then, the centroid of each cluster is updated. In the online/sequential version, a centroid is updated each time a data item is relocated. Bottou and Bengio (1995) show that k-Means is a gradient-descent algorithm that minimizes the quantization error using Newton’s algorithm. They also provide empirical studies on the convergence of k-Means showing that the online version converges significantly faster than batch k-Means in the first training epochs but is surpassed in further iterations. These results suggest that it is better to run the online algorithm during one epoch and then switch to the batch algorithm. Dhillon et al. (2002) noticed that the batch algorithm tends to get stuck when applied to document clustering using cosine similarity, while the online algorithm works better. The batch version has the advantage of allowing straightforward parallelization [Dhillon and Modha (1999)].

The wide applicability of k-Means is mainly due to its simplicity and its time-efficiency. For a fixed number of iterations \(i \), \(n \) data items described by \(m \) attributes and \(k \) clusters the overall complexity is \(\Theta(inkm) \). However, several important drawbacks can also be highlighted:

- k-Means is a greedy optimizer delivering local optima and not the global one;
- the result is strongly dependent on the initialization;
- it is sensitive to outliers;
- it is applicable only to numerical data.

Several extensions of k-Means were proposed in literature. Fuzzy c-Means, was proposed by Dunn (1973) and later improved by Bezdek (1981), to allow soft assignments. Pelleg and Moore (2000) extended k-Means to automatically find the number of clusters by optimizing a criterion such as Akaike Information Criterion or Bayesian Information Criterion.

K-Means under the Euclidean metric is known to deliver convex-shaped clusters. Kernel K-means [Schölkopf et al. (1998)] was proposed to detect arbitrary shaped clusters, with an appropriate choice of the kernel similarity function.

An alternative to the standard k-Means is k-Medians (Kaufman and Rousseuw (2005)), which uses as centroid the median of the data instead of the mean.
Several approaches based on meta-heuristics fall into the relocation class of algorithms for clustering. Most of them search for the class representatives that minimize the intra-cluster variance (i.e. Simulated Annealing was used by Selim and Alsultan [1991] and Klein and Dubes [1989], a comparative study between Simulated Annealing, Tabu Search and a Genetic Algorithm is presented in [Al-Sultana and Khan (1996)])

Mixes of hierarchical and relocation algorithms exist. Steinbach et al. (2000) proposed a hierarchical divisive version of K-means, called bisecting K-means, that recursively partitions the data into two clusters at each step.

3.3.3 Probabilistic methods

Probabilistic methods were developed based on the idea that the data set corresponds to a sample independently drawn from a mixture of several populations. The Expectation-Maximization algorithm iteratively refines an initial cluster model to better fit the data and terminates at a solution which is locally optimal or a saddle point of the underlying clustering criterion [Dempster et al. (1977)]. The objective function is the log-likelihood of the data, given the model measuring how well the probabilistic model fits the data. An important property of probabilistic clustering is that its applicability is not restricted to numerical data but can be applied to heterogeneous data as well.

K-Means can be considered a variant of the generalized expectation-maximization algorithm: the assignment step is referred to as expectation and the update of the center of the cluster as maximization.

3.3.4 Density-based methods

Density-based clustering methods consider clusters as high density regions in the feature space separated by low density regions. This interpretation has the advantage of detecting clusters of arbitrary shapes. Two main concepts are introduced in this context: density and connectivity. Both take into account the local distribution in data and necessitate the definition of neighborhood in data and nearest neighbors computations.

DBSCAN [Ester et al. (1996)] is the most popular algorithm of this kind. Its performance depends mainly on two parameters. The neighborhood size is defined in terms of distance ϵ. A core point is defined to be a point having a minimum number minPts
of points in the \(\epsilon \)-neighborhood. A point \(y \) is said to be directly density-reachable from a core point if it is in its \(\epsilon \) neighborhood. A point \(y \) is density reachable from a point \(x \) if there is a chain of points \(p_1, p_2, ..., p_n, p_1 = x, p_n = y \), such that \(p_{i+1} \) is directly density-reachable from \(p_i \). Two points \(x \) and \(y \) satisfy the density-connectivity property if there is a point \(q \) such that both \(x \) and \(y \) are density-reachable from \(q \). The algorithm assigns all points satisfying the density-connectivity relation to one cluster. One important drawback of DBSCAN is that there is no straightforward way to fit the two parameters to data. OPTICS [Ankerst et al. (1999)] was proposed to overcome part of this drawback by covering a range of increasing values for the neighborhood size.

3.3.5 Grid-based methods

The grid-based clustering algorithms work indirectly with data: they segment the feature space and then they aggregate dense neighbor segments. A segment is a multi-rectangular region in the feature space, result of the Cartesian product of individual feature subranges. Data partitioning is practically achieved through space partitioning.

There are grid-based methods that prune the attribute space in an Apriori manner, performing *subspace clustering*. Subspace clustering is motivated in case of high-dimensional data, when irrelevant features can mask the grouping tendency. It is an extension of traditional clustering that seeks to find clusters in different subspaces within a data set. The most popular grid-based algorithms of this type are CLIQUE [Agrawal et al. (2005)] and ENCLUS [Ada et al. (1999)].

3.3.6 Ensemble clustering

Various clustering techniques generate various partitions of data. To reach a consensus over the various partitions that can be extracted and to hopefully obtain a better one, ensemble techniques were designed.

Combining multiple clustering algorithms is a more challenging problem than combining multiple classifiers.

Recent literature on clustering records several ensemble techniques which combine individual clusterings [Fred and Jain (2005); Strehl and Ghosh (2002)] and various empirical studies concerning the performance of these techniques [Hu et al. (2006); Zhou and Tang (2006)]. Much work was conducted on ensemble construction. The bagging
technique was borrowed from supervised classification [Dudoit (2003)] and the boosting method was adapted to the unsupervised case [Topchy et al. (2004)]. Random feature subspaces were used to create weak but diverse clusterings [Topchy et al. (2003)], random projections is adopted to construct clusters in low dimensional spaces [Urruty et al. (2007)], different clustering algorithms were applied [Strehl and Ghosh (2002)], or a clustering method is applied repeatedly with different parameters/initializations [Jain and Fred (2002)].

There are studies tracking the properties that make all the difference to the quality of the final clustering result [Hadjitodorov et al. (2006); Hu et al. (2006)]. They mainly address the following questions: how accurate and how diverse should input partitions be?; how many components are needed to ensure a successful combination? A unanimously accepted result is that diversity and accuracy are mandatory features for good ensembles. [Hu et al. (2006)] suggest that a limited and controlled diversity is preferred for ensemble construction; the intuition behind it is that the component clusterings differ only in the instances whose assignments are incorrect and these errors could be complemented or canceled during the combination. If various clustering algorithms produce largely different results due to different clustering criteria, combining the clustering results directly with integration rules, such as sum, product, median and majority vote can not generate a good meaningful result.

Section 6.4 of the thesis presents in detail an ensemble clustering procedure.

3.4 Optimization criteria

As formulated in section 3.2.1 clustering is an optimization problem that lacks a general-accepted objective. Various algorithms optimize (explicitly or not) various objectives. This section outlines the objectives optimized implicitly by the traditional clustering approaches and surveys clustering criteria proposed to be optimized explicitly by various (meta)heuristics. A distinction is made with respect to the available information on the number of clusters.

The objective functions presented here are called in literature internal clustering criteria, as they assess the fit between the structure and the data using only the data themselves.
3.4.1 Known number of clusters

Popular clustering techniques like hierarchical approaches and k-Means necessitate the number of clusters to be known. They are greedy methods optimizing implicitly various objectives.

Centroids-based methods work towards minimizing the deviation of data items from the cluster representatives. In k-Means the centroid corresponds to the mean, which lead to the implicit minimization of the intra-cluster variance. Just as the mean minimizes the standard deviation, the median minimizes average absolute deviation; thus, k-Medians minimizes implicitly and in a greedy manner the average absolute deviation. The two methods can be regarded as both optimizing the same objective - the error over all clusters - but k-Means optimize it with respect to the Euclidean metric, while k-Medians optimize it with respect to the Manhattan metric.

The intra-cluster variance is the simplest and the most used criterion for clustering, being also explicitly optimized with general search algorithms. It is also known in literature as the sum-of-squared-error criterion (Duda et al. (2001)). It is defined in equation

\[C_{se} = \sum_{j=1}^{k} \sum_{d \in C_j} \delta^2(c_j, d) \quad (3.1) \]

where \(c_j = \frac{1}{|C_j|} \sum_{d \in C_j} d \) is the mean of cluster \(C_j \), \(\delta \) is the Euclidean distance and by \(|C_j| \) we denote the cardinality of cluster \(C_j \).

This criterion is appropriate for data containing clusters of equal volumes; it is also sensitive to outliers. These situations degenerate into drawbacks for k-Means, and are illustrated in section [4.2.4] of this thesis.

By simple computations the mean vectors can be eliminated from equation 3.1 and the following equivalent criterion is obtained:

\[C_{se} = \frac{1}{2} \sum_{j=1}^{k} \frac{1}{|C_j|} \sum_{d \in C_j} \sum_{d' \in C_j} \delta^2(d, d') \quad (3.2) \]
Using statistics terminology, intra-cluster variance is unexplained/residual variance. Summed up to the explained variance it gives the total variance in data. Then, a criterion equivalent to 3.1 but necessitating maximization is the following:

\[C_{se} = \sum_{j=1}^{k} |C_j| \delta^2(c_j, c) \]

(3.3)

where \(c = \frac{1}{|S|} \sum_{d \in S} d \) is the mean of the entire data set.

In the case of hierarchical algorithms and density-based methods, to derive a global optimization criterion is not such a straightforward task, because these methods base their decisions on the local distribution in data. It was established (Fraley and Raftery [2002]; Kamvar et al. [2002]) that classical agglomerative algorithms have quite complex underlying probability models. The Single-Link algorithm is represented by a mixture of branching random walks, while the Average-Link algorithm is equivalent to finding the maximum likelihood estimate of the parameters of a stochastic process with Laplacian conditional probability densities.

The use of the Complete-Link or of the minimum-variance criterion (Ward’s method) relates more to squared error methods. The use of the single-link criterion can be related to density-based methods. The average-link algorithm optimizes greedily a criterion widely known in graph partitioning as minimum cut:

\[C_{MC} = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \sum_{d \in C_i} \sum_{d' \in C_j} \delta(d, d') \]

(3.4)

The above clustering criteria are sensitive to axes scaling: different partitions may be obtained if the data is subject to linear transformations.

An invariant criterion, frequently used in literature, can be formulated based on the so-called scatter matrices of a partition. The scatter matrix of a cluster \(C_i \) is the matrix \(S_i \in \mathbb{R}^{m \times m}, S_i = \sum_{d \in C_i} (d - c_i)(d - c_i)^t \). The within-cluster scatter matrix is the sum:

\[S_W = \sum_{i=1}^{k} S_i \]

(3.5)
The trace of the within-cluster matrix is exactly criterion 3.1.

The between-cluster scatter matrix $S_B \in \mathbb{R}^{m \times m}$ is built based on the means of the clusters (c_i) and the mean of the entire data set (c):

$$S_B = \sum_{i=1}^{k} (c_i - c)(c_i - c)^t$$

(3.6)

The trace of the between-cluster scatter matrix is identical to criterion 3.3.

An invariant clustering criterion can be formulated based on the property that the eigenvalues of $S_W^{-1} S_B$ are invariant under linear transformations of the data; then, functions of these eigenvalues can be used. Because the trace of a matrix is the sum of its eigenvalues, a widely used invariant clustering criterion necessitating maximization is:

$$C_{WB} = tr[S_W^{-1} S_B].$$

(3.7)

As highlighted in [Duda et al. (2001)], if different apparent clusters can be obtained by scaling the axes or by applying any other linear transformation, then all of these groupings will be exposed by invariant procedures. For this reason, invariant clustering criteria are likely to possess multiple local optimum, being more difficult to optimize.

3.4.2 Unknown number of clusters

The clustering criteria presented above (section 3.4.1) can be used only in the supervised context of clustering, when the number of clusters is known. If they are used to order partitions with various numbers of clusters, the extreme case - the partition consisting of n singleton clusters - will be preferred. To identify the optimal number of clusters in this case, the elbow method can be used: the problem is solved repeatedly for different values of k and the criterion is computed in all cases; a large gap in the criterion values suggests the optimal number of clusters. This method is also employed in the case of hierarchical algorithms with respect to the linkage-metric.

A real challenge in clustering is the design of objective functions able to rank highest the partition with the optimal number of clusters. Such clustering criteria will be referred further in this thesis as unsupervised criteria. Several studies exist in literature with this aim.
The most popular indices of this type are given below.

Silhouette Width (Rousseeuw (1987)) is shown in several studies to be superior over other unsupervised clustering criteria (Handl and Knowles (2006a)). SW for a partition is computed as the average silhouette over all data items in the data set. The Silhouette for a data item \(i\) is computed as follows:

\[
S(i) = \frac{b_i - a_i}{\max(b_i, a_i)}
\]

where

\[
a_i = \text{avg}_{d \in C_i} \delta(d_i, d)
\]

where \(d_i \in C_i\), denotes the average distance between \(i\) and all data items in the same cluster;

\[
b_i = \min_{C \neq C_i} \text{avg}_{d \in C} \delta(d_i, d)
\]

where \(d_i \in C_i\), denotes the average distance between \(i\) and all data items in the closest other cluster (defined as the one yielding the minimal \(b_i\)).

SW takes on values in the range [-1,1] and is to be maximized in search of the optimal clustering.

Another widely used clustering criterion is Davies-Bouldin Index (DB) (Davies and Bouldin (1979)) which makes use of cluster representatives to compute the within-cluster compactness and between-cluster separation in a partitioning:

\[
W_{DB}(j) = \frac{1}{|C_j|} \cdot \sum_{d \in C_j} \delta(c_j, d)
\]

\(W_{DB}(j)\) is the intra-cluster compactness for cluster \(C_j\);

\[
B_{DB}(j,l) = \delta(c_j, c_l)
\]

\(B_{DB}(j,l)\) is the separation between clusters \(C_j\) and \(C_l\).

The DB Index is defined as:

\[
I_{DB} = \frac{1}{k} \cdot \sum_{j=1}^{k} \max_{j \neq j} \left(\frac{W_{DB}(j) + W_{DB}(l)}{B_{DB}(j,l)} \right)
\]

and is to be minimized in order to seek for the optimum clustering.

The Dunn Index (Dunn (1974)) measures the ratio between the smallest inter-cluster distance and the largest intra-cluster distance in a partition:
$D = \min_{i=1}^{k} \min_{j=1}^{k} \frac{\text{dist}(C_i, C_j)}{\max_{l=1}^{k} \text{diam}(C_l)}$ (3.10)

where $\text{diam}(C_i)$ is the maximum intra-cluster distance within cluster C_i and $\text{dist}(C_i, C_j)$ is the minimal distance between pairs of data items placed in the distinct clusters C_i and C_j. The Dunn index is to be maximized in order to seek for the optimum clustering.

Section 7.4.3 of this thesis presents some comparative studies on the performance of the above criteria.

Bezdek and Pal (1998) evaluate several indices for crisp clustering. They identify two deficiencies of Dunn’s index which make it overly sensitive to noisy clusters and propose several generalizations of it that are not as brittle to outliers in the clusters.

Raskutti and Leckie (1999) propose and study several clustering criteria. They compare the number of clusters chosen by the proposed criteria with the number of clusters chosen by a group of human subjects. The empirical study demonstrates that there are usually several significant sets of clusters that can be extracted, rather than a single set of clusters that is the clear winner.

3.5 Solution evaluation

The quality of a partition can be quantified using external clustering criteria that measure performance by matching a clustering structure to a priori information. This section lists the external clustering criteria used in experimental sections across this thesis to measure the match between partitions returned by the investigated algorithms and the true partition of the data.

The match between two partitions C and U can be expressed with the aid of the contingency matrix (also called confusion matrix) $M \in \mathbb{R}^{k_C \times k_U}$ (k_C and k_U give the number of clusters in C, respectively U) where $M_{ij} = |C_i \cap U_j|$ gives the number of data items placed in cluster C_i in C and in cluster U_j in U.

Given two partitions C and U, the Rand Index (RI) records the following information:
Clustering

- a - the number of pairs of data items that are placed in the same cluster in C and in the same cluster in U
- b - the number of pairs of objects in the same cluster in C but not in the same cluster in U
- c - the number of pairs of objects in the same cluster in U but not in the same cluster in C
- d - the number of pairs of objects in different clusters in both partitions.

The Rand Index is computed as $(a + d)/(a + b + c + d)$. The quantities a and d can be interpreted as agreement, while b and c as disagreement.

It is desirable that the similarity measure takes values close to 0 for two random partitions and value 1 for identical partitions. To this goal, a normalization by the results expected from random data is needed. The Adjusted Rand Index [Hubert (1985)], which incorporates such normalization, can take on values in a wider range, thus increasing the sensitivity. In general, the normalization corrects the estimated absolute degree of quality. The Adjusted Rand Index is given by the formula:

$$ARI = \frac{\sum_{ij} C_{M_{ij}}^2 - \left[\sum_i C_{M_{i-}}^2 \cdot \sum_j C_{M_{-j}}^2\right] / C_M^2}{\frac{1}{2} \left[\sum_i C_{M_{i-}}^2 + \sum_j C_{M_{-j}}^2\right] - \left[\sum_i C_{M_{i-}}^2 \cdot \sum_j C_{M_{-j}}^2\right] / C_M^2}$$ (3.11)

where M_{ij} is the number of data items both in cluster i in C and in cluster j in U, M_{i-} is the number of data items in cluster i in C (the sum on row i in M) and M_{-j} is the number of data items in cluster j in U (the sum on column i in M).
Chapter 4

Evolutionary Computation in clustering

As seen in chapter 2, Evolutionary Computation techniques are general-purpose optimization methods that rely on the feedback of the system to discover and exploit properties specific to the problem instance under analysis. Because of its huge search space and its unsupervised nature, clustering is a good candidate at optimization for these methods.

This chapter presents approaches to clustering based on Evolutionary Computation techniques. Section 4.1 surveys existing work. A hybridization between k-Means and PSO aiming at improving the performance of the centroid-based method is presented in section 4.2. Community detection in social networks is investigated in section 4.3 and a multi-objective graph clustering problem in section 4.4.

4.1 Clustering techniques based on EC

This section surveys existing work in clustering with EC techniques. The field is quite wide, as numerous attempts to use EC techniques in clustering exist. We provide a systematic view, triggered by the kind of solution encoding. The encoding inevitable relates the method to one of the traditional clustering techniques presented in section 3.3 of this thesis; therefore, the current section is organized similarly.
4.1.1 Relocation approaches

Because generally in EC techniques, a population of complete solutions evolves during an iterative process, most approaches to clustering are relocation methods, that improve initially generated partitions. Several encodings were proposed to represent partitions.

First attempts to use Evolutionary techniques in clustering date back to 1991 when Krovi (1991) proposed a genetic algorithm to search for the optimal partition of a data set into 2 clusters. The straightforward group-encoding representation is used: solutions are strings of integers, of length equal with the size of the data set, the i'th integer signifying the cluster number of data item i. Used in conjunction with classical genetic operators, this encoding suffers from several drawbacks like redundancy and invalidity and determines a slow convergence of the algorithm. The algorithm maximizes the ratio of the between sum-of-squares and the within sum-of-squares. The same representation is used by Krishna and Narasimha Murty (1999) to search for a partition with a fixed number of clusters using modified genetic operators. Crossover is replaced with one k-Means iteration: the centroid (mean) of each cluster is computed and each data item is reassigned to the nearest centroid; mutation takes into account the distances to clusters centroids.

Permutations are used in several ways to render a partition. Jones and Beltramo (1991) encode a solution as a permutation that gives an ordering of the objects and separators that indicate the cluster boundaries. A greedy permutation representation uses the objects on the first k positions in the permutation as cluster representatives, the rest of the objects being assigned to the nearest representative. Crossover and mutation operators dedicated to permutation encodings are used.

Bezdek et al. (1994) encode a partition as a boolean $k \times n$ matrix. The criterion to be minimized is the sum-of-squared-errors. They experiment with several distance metrics in order to detect clusters of various shapes. The crossover operator swaps columns between two chromosomes. Mutation simply changes randomly the cluster assignment of one object.

Luchian et al. (1994) proposed a new encoding which considers cluster representatives, allowing for simultaneous search of the optimum number of clusters and the optimum partition. The partition is constructed in a manner similar to k-Means: the data items are assigned to clusters based on the proximity to the cluster representatives. Crossover and mutation operators are adapted to work with variable-length chromo-
Evolutionary Computation in clustering

somes and real encoding. A lamarckian operator that acts at gene level and modifies a cluster representative to match the mean of the corresponding cluster is introduced. This can be interpreted as a hybridization with k-Means since the cluster assignment procedure and the update of the cluster representative constitute one iteration of this traditional clustering method. However, experimental results show that this hybridization can lead to premature convergence due to an increased selection pressure. Unsupervised clustering criteria able to evaluate and order partitions with various number of clusters are used. Hall et al. (1999) extend the algorithm to search for fuzzy partitions with fixed number of clusters. Gray coding is used to encode cluster representatives. This representation became the most successful in the EA clustering literature [Maulik and Bandyopadhyay (2000); Pan et al. (2003)]. The criterion optimized in approaches of this kind is the compactness computed based on the distances between the data items and the cluster centers.

Mostly because of its design for continuous optimization, many approaches to clustering based on PSO use the centroid-based encoding presented in Luchian et al. (1994) and search for cluster representatives. The performance of these approaches is compared to the standard k-Means algorithm (with the real number of clusters) and is reported to be significantly better - or equal in performance in case k-Means is supplied the best initial configuration. The improved performance is due to the increased exploration capabilities, eliminating one important drawback: strong dependency on initialization. However, other drawbacks may still be present: the result is dependent on the metric used and clusters with similar shapes and volumes tend to be formed. A survey on Swarm Intelligence techniques applied to clustering can be found in Abraham et al. (2007).

Differential evolution was used in the supervised [Abraham et al. (2006)] and unsupervised scenario [Zaharie et al. (2007)] with a centroid-based encoding.

A notable contribution the field of Evolutionary Computation made to clustering is the use of multi-objective algorithms, which allow for simultaneous optimization of several criteria. They optimize both intra-cluster variance and connectivity. They use the locus-based adjacency representation. A value j assigned to the ith gene, is interpreted as a link between data items i and j: in the resulting clustering solution they will be in the same cluster. The decoding of this representation requires the identification of all connected components. All data items belonging to the same connected component are then assigned to one cluster. The representation is well-suited for the use with standard crossover operators. Moreover, this encoding allows, in conjunction with an
objective function based on connectivity, to discover clusters of various shapes. The method improves substantially over traditional methods like k-Means and hierarchical versions, methods which optimize a single objective from the two under consideration.

4.1.2 Density-based approaches

In the category of density-based approaches for clustering we integrate multi-modal evolutionary algorithms that search for cluster centers that lie in dense regions in the feature space [Dumitrescu and Simon (2003); Nasraoui et al. (2005); Zaharie (2005)]. Gaussian functions are used to measure the fit of cluster centroids.

Nasraoui et al. (2005) suppose that data are distributed according to normal distributions: each cluster will be a hyper-ellipsoid characterized by a mean and a covariance matrix. A multi-modal genetic algorithm is used to find local maxima of a density function. An individual in the population represents a point in the m-dimensional feature space with the aim of identifying centers of dense regions. The scales and orientation parameters of clusters are adjusted by estimating them using the current values of the centers.

Zaharie (2005) analyzes the applicability of a crowding Differential Evolution algorithm in the same context. The author evolves not only the number of clusters, but also the hyper-ellipsoid scales. Additionally, compared to the method in (Nasraoui et al. (2005)) that generates one descriptor for each cluster in this approach a set of descriptors can be associated to the same cluster. The proposed approach ensures a reliable identification of clusters in noisy data providing in the same time multi-center synthetic descriptions for them.

4.1.3 Grid-based approaches

Sarafis et al. (2002) use a genetic algorithm to search for a partition of the feature space that implicitly provides a partition of the data set. The algorithm evolves rules which build a grid in the feature space. Each individual consists of a set of k clustering rules, each rule corresponding to one cluster. Each rule is constituted from m genes and each gene corresponds to an interval involving one feature. The authors attempt to alleviate certain drawbacks related to the classical minimization of square-error criterion by suggesting a flexible fitness function which takes into consideration, cluster asymmetry,
density, coverage and homogeneity. The method is able to discover clusters of various shapes, sizes and densities. This comes at a high computational cost due to the form of the fitness function.

4.1.4 Manifold learning

Inspired by dimensionality reduction techniques, Swarm Intelligence algorithms were designed to embed the original data set into a lower-dimensional feature space which preserves the topological relationships among data items. ACO was used to arrange data items within the cells of a two-dimensional grid, representation well-known from Self Organizing Maps (Kohonen, 1995); a rigorous study on the performance of this approach can be found in Handl et al. (2005).

A mapping of the original data set into a two-dimensional Euclidean space is performed using simple PSO rules [Veenhuis and Koeppen (2006)]; although a metric space is employed, the approach is not aimed at generating an embedding of the original data which faithfully preserves the original pairwise distances among data items (as in Multidimensional Scaling approaches); the focus is on identifying clusters through species separation metaphor. Breaban et al. (2009) use a similar technique to find communities in social networks; the method is detailed in section 4.3.

4.2 Introducing the Connectivity Principle in k-Means

Traditional approaches to clustering are single-objective optimizers that take into account either the global distribution in data (it is the case of relocation methods like k-Means, probabilistic methods), either local information (i.e. density-based methods, hierarchical methods) but not both. In essence, clustering can be seen as a multi-objective optimization problem. Nevertheless, few multi-objective clustering strategies have been proposed; the existing approaches are based on multi-objective evolutionary techniques.

This section approaches clustering as a multi-objective problem and proposes a method which is a hybridization between k-Means and a Swarm Intelligence technique (PSO-kMeans). The work presented here is an extension of a previous study that uses
PSO as a preprocessing step to better outline clusters in data \cite{Breaban2008}. PSO is used this time to introduce the connectivity principle (specific to density-based methods) into k-Means (a centroid-based clustering approach). The proposed method alleviates some drawbacks of the k-Means algorithm; thus, it is able to identify types of clusters which are otherwise difficult to obtain (elongated shapes, non-similar volumes). Experimental results show that PSO-kMeans improves the performance of standard k-Means in all test cases and performs at least similar to state-of-the-art methods in the worst case. PSO-kMeans is robust to outliers. This comes at a cost: the preprocessing step for finding n_s nearest neighbors for each of the n data items is required, which increases the initial linear complexity to $O(n^2)$ including distance computations among data items.

4.2.1 Motivation

K-Means is the most popular clustering algorithm due to its simple implementation, low run-time and space complexity and simple usage since no parameters (except the number of clusters) are involved. However, all these advantages come at a cost: performing a local search, its performance is highly dependent on initialization. Moreover, its applicability is reduced to the case of data sets with spherical clusters of almost-equal volumes.

The first drawback is partially alleviated if a smarter initialization scheme is used. The initial centroids should be placed far apart, or a hierarchical clustering method may be used to return an initial partition over a small sample of the data set. The most comfortable way to deal with this drawback (but at the same the most time-consuming) is to run k-Means repeatedly with random initializations and choose the one with the lowest intra-cluster variance.

The second drawback is met to all clustering algorithms based on representatives: under the Euclidean metric spherical clusters are generated. Even if the centroids-based clustering methods based on Genetic Algorithms or Swarm Algorithms tackle the first drawback (dependency to initialization), they cannot generate clusters of various shapes.

In order to deal with clusters of various shapes, a more local concept of clustering must be introduced: neighboring data items should share the same cluster. We propose a Swarm algorithm called PSO-kMeans which implements the connectivity principle and introduce it within k-Means taking thus into account simultaneously the local and the global distribution in data.
4.2.2 The Hybridization

The connectivity principle was introduced in different forms in clustering algorithms. In density-based approaches it works towards putting in the same cluster neighboring data items that form dense regions. Handl and Knowles (2005) formulate and maximize explicitly by means of GAs, a connectivity objective defined as the number of neighboring data items which reside in the same cluster.

We propose another approach for implementing the connectivity principle, much of it inspired from metric learning. In supervised metric learning, a metric is learned so that the distance between similar data items is as small as possible under the new metric. In our unsupervised context, similarity is defined with respect to the Euclidean distance: neighboring data items in the Euclidean space are considered to be similar. Consequently, in PSO-kMeans the distance between neighboring data items is shortened by modifying their representation with the aid of the PSO paradigm.

Generally, in solving optimization problems with PSO, the position vectors \(x \) correspond to complete candidate solutions and the particles \(p \) and \(g \) which dictate the particles’ motion are chosen with regard to a fitness/objective function from the population (see section 2.3.1).

In our approach for clustering, each particle corresponds to a data item in the data set. The feature space defined by the data set provides the environment for the swarm of particles. The position vector \(x \) of each particle is initialized with the feature vector of the corresponding data item. The original PSO rules that dictate the motion of each particle are used to change the representation of each data item. No objective function is explicitly formulated, but through an appropriate definition of the vectors \(p \) and \(g \) in equation 2.1a the connectivity is maximized.

Each particle updates its position to match its nearest neighbors. With this aim, each particle \(x_i \) should move iteratively towards each of its neighbors. In order to reduce the run time, a centroid over the neighbors is computed and the particle moves towards it. This centroid plays the "\(p_i \)" role in formula 2.1a. Its use accounts for local distribution in data.

To take into account the global distribution in data, "\(g_i \)" is defined to be the centroid closest to particle \(i \) in the partition returned by k-Means.

The new clustering algorithm is presented succinctly in pseudocode 4.1.
Figure 4.1: PSO-kMeans

Require: The set of data items $D = \{x_1, x_2, ..., x_n\}$, the number of clusters k.
Ensure: a hard partition $C = \{C_1, C_2, ..., C_k\}$, $\bigcup_{i=1}^{k} C_i = D$ and $C_i \cap C_j = \emptyset \forall i, j = 1..n$.

// preprocessing step:
for all data item x_i do
 $NN_i \leftarrow$ the n_s nearest neighbors for x_i
end for

// initialization phase:
apply k-Means until convergence and store:
$C \leftarrow \{C_1, C_2, ..., C_k\}$, the hard k-Means partition;
$c_j \leftarrow \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$ the centroid of cluster j, $\forall j = 1..k$;
$d_i \leftarrow dist(x_i, c_j)$, $\forall i = 1..n$, where c_j is the centroid of cluster $C_j \in C$ and $x_i \in C_j$,
$dist$ is the Euclidean distance;
$\sigma^2 \leftarrow \frac{1}{n} \sum_{i=1}^{n} d_i^2$ (approximates the variance within clusters)

// the PSO-kMeans iterations:
while C has not changed for itr iterations do
 // run one PSO iteration:
 for $i \leftarrow 1$ to n do
 $p_i \leftarrow \frac{1}{|NN_i|} \sum_{x_j \in NN_i} x_j$
 $g_i \leftarrow c_j$ s.t. $x_i \in C_j$
 update x_i applying formulae 4.1
 end for

 // run one k-Means iteration:
 for $i \leftarrow 1$ to n do
 reassign x_i to C_j, where $C_j = \arg\min_{c_l, l=1..k}\{dist(x_i, c_l)\}$
 end for
 for $j \leftarrow 1$ to k do
 $c_j \leftarrow \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$
 end for
end while
A pre-processing step is required to find the n_s nearest neighbors of each particle. This set of neighbors is computed only once, at the beginning, and is not modified throughout the run. In this way, subsequent changes of the positions of the data items, which correspond to changes in the representation of the data items to be clustered, preserve much of the initial topology.

The batch version of the k-Means algorithm is run until convergence. The centroids retrieved with k-Means serve further as g_i in the first iteration of PSO.

Then, an iterative process begins that alternates a PSO iteration with a k-Means iteration until a stable partition is reached. The PSO iteration consists of recomputing p_i and applying formulae [4.1] which modify each data item x_i in the data set. The particle p_i is updated using the same set of neighboring data items computed in the pre-processing step; because all particles/data items are subjected to the PSO updating rules, the configuration of the neighborhood changes implicitly.

The k-Means iteration comes to rebuild the partition and reassigns the modified data items to the previous found centroids. The centroids g_i are updated.

Parameters

The initial velocity is set to 0 for all particles. The random multipliers in formulae [2.1a] of the basic PSO are not needed. The weights for the inertia term and for the p_i term are set to 1. Preliminary experiments showed that the inertia term has an important influence on the speed of convergence: the number of iterations in PSO-kMeans reduces to almost a half for some data sets in its presence, compared to the case when it is not used at all.

If a unit weight is given also to the third term in equation [2.1a], the impact of our hybridization is much reduced: almost all particles will end up in the centroids identified with k-Means on the original representation of the data set. Generally in k-Means, for a given cluster the data items situated closer to the centroid are more likely to belong to the corresponding cluster than the data items situated farther (fuzzy k-Means originates from this principle). For this reason we apply the third update rule in equation [2.1a] (the move towards the cluster centroid) on only 10% of the data items situated closest to the centroid. For clusters obeying the normal distribution, 10% data items are supposed to lie within a distance of 0.125 standard deviations from the centroid. To reduce the computational cost, we adopt the hypotheses of normal distribution and apply the third updating rule on the data items satisfying the property above; however, this does not
restrict the use of our method on other types of distributions. The average within-cluster variance σ^2 is computed in the k-Means iteration when data items are assigned to clusters. A vector of length n (the number of data items) is used to store at this step the distances between each data item i and its closest centroid g_i. Using the average over all clusters of the within-cluster variance instead the exact values computed for each cluster in turn, brings some advantages. Well-initialized cluster centroids will ”consume” most of this rule compared to wrongly placed centroids. The particles on the boundary of the clusters are attracted to their neighbors situated closer to the centroids and migrate together to the center of the cluster, leading to more stable clusters.

Formulae 4.1 are used to update the representation x_i of the data item i at iteration t.

\begin{align*}
v_i^t &= v_i^{t-1} + (p_i - x_i^{t-1}) + w(i) \cdot (g_i - x_i^{t-1}) \\
x_i^t &= x_i^{t-1} + v_i^t
\end{align*}

\begin{equation}
w(i) = \begin{cases}
1, & \text{dist}(x_i^{t-1}, g_i) < 0.125 \cdot \sigma \\
0, & \text{otherwise}
\end{cases}
\end{equation}

\subsection{4.2.3 Experiments}

The performance of PSO-kMeans is studied on artificial and real data sets, in the supervised context of clustering (when the number of clusters is known) and also in the unsupervised context (when the number of clusters is not known).

\section*{Datasets}

In order to test the technique we propose, some complex data sets made available by Julia Handl\footnote{http://dbkgroup.org/handl/generators/} are used:

- a standard cluster model using multivariate normal distributions. Different combinations number of attributes / number of clusters are considered, as described in Table 4.1. In low dimensions (2 features), the clusters generated are frequently
Evolutionary Computation in clustering

Parameter	Gaussian datasets	Ellipsoidal datasets
#attributes | 2, 10 | 50 |
#clusters | 4, 10, 20 uniformly in [50, 500] for datasets with 4 and 10 clusters, and uniformly in [10, 100] for datasets with 20 clusters | 4, 10, 20 uniformly in [50, 500] for datasets with 4 and 10 clusters and uniformly in [10, 100] for datasets with 20 clusters |
Size of each cluster | | |

Table 4.1: Parameters for the artificial data sets

elongated and of arbitrary orientation but in high dimensions (10 features) they tend to become spherical. The clusters have various volumes/densities.

- data sets of high dimensionality consisting of ellipsoidal clusters with the major axis of arbitrary orientation. The parameters are explained in Table 4.1.

For each combination of number of attributes / number of clusters 10 different problem instances were generated and referred to as the group of problems (#attributes)d- (#clusters)c.

The real data sets used are Iris, Soybean, and Breast Cancer from UCI Repository.

Experimental setup

In order to test the performance of PSO-kMeans in the supervised context of clustering, 50 runs of the algorithm are performed for each dataset. Random initialization is used at each run, each cluster centroid being initialized with a randomly chosen data item from the dataset.

The performance of PSO-kMeans is compared to the batch version of the standard k-Means. The Adjusted Rand Index (equation 3.11) is computed for the partition derived with k-Means in the initialization phase of PSO-kMeans and then for the partition obtained at the end of PSO-kMeans. Both the number of iterations required for standard k-Means to reach convergence and the additional number of iterations performed in PSO-kMeans until convergence are reported.

2http://archive.ics.uci.edu/ml/
If we are willing to substitute the standard k-Means with PSO-kMeans, one important concern arises with regard to the optimum number of clusters. Because PSO-kMeans modifies the representation of data items and consequently the distances among them, there exists the risk of breaking one initial cluster into several smaller dense clusters, case which misleads the unsupervised clustering analysis. Therefore, experimental analysis is required for the unsupervised scenario of clustering.

In the unsupervised context, when the number of clusters is not known in advance, the optimal partition can be obtained as follows: k-Means is run iteratively with k in a wide range of values and the resulted partitions having different numbers of clusters are evaluated using an unsupervised clustering criterion (see section 3.4.2 for unsupervised clustering criteria). The winning partition and consequently the optimum number of clusters is considered to be the one with the best score under one of these criteria. We adopt this scenario to study PSO-kMeans in the unsupervised context: an unsupervised clustering criterion is computed for the partition returned at the end of the algorithm, on the modified representation of the data items.

In the unsupervised context, we run PSO-kMeans iteratively with the number of clusters ranging between 2 and 30. Because the performance of PSO-kMeans is still dependent on the initialization (as in standard k-Means), for each number of clusters 10 runs of the algorithm with random initializations are performed; from the 10 partitions resulted, the one with the lowest intra-cluster variance is kept. From the 29 partitions having different numbers of clusters, the best partition is extracted using unsupervised clustering criteria. For each problem instance the above steps of analysis are repeated 10 times and averages are computed. We report the results obtained under Silhouette Width and a recently proposed criterion [Breaban and Luchian (2009)] (equation 7.3) for which experimental studies showed to outperform the well-known Davies-Bouldin Index (see section 7.4.3).

The neighborhood size is the only parameter of the algorithm we have not discussed yet. To eliminate the need of fine-tuning under costly experimental studies, we base our decision on the reasonable assumption that the size of the smallest cluster in the partition is at least 10% of the average size of a cluster and, moreover, that each cluster contains at least 10 data items. Therefore, the size of the neighborhood is computed for each data set automatically to be $n_s = 10\% \cdot (n/k)$. If n_s is less than 10, then the neighborhood size is set to 10.
Figure 4.2: Comparative results for supervised clustering: the first box plot in each group corresponds to the standard k-Means and the second box plot in each group corresponds to PSO-kMeans. Each box plot from the groups *d-*c correspond to 10 problem instances × 50 runs of the algorithm with random initializations (a total of 500 values of the Adjusted Rand Index). In case of real data sets the box plots present the values over 50 runs of the algorithms with random initializations.

The partitions returned by the clustering algorithms under test are evaluated against the optimal clustering using the Adjusted Rand Index (ARI) (equation 3.11).

Results

Figure 4.2 illustrates the comparative performance of the standard k-Means and PSO-kMeans. For each problem instance 50 runs of the algorithms were performed. For the artificial data sets the box plots present the results over all 10 problem instances of each class of problems, summarizing a total of 500 values of the Adjusted Rand Index.

One can observe that the performance of PSO-kMeans is still dependent on the initialization but it improves in most cases the results delivered by standard k-Means. The gain in performance is more obvious in the case of ellipsoidal clusters (data sets 50d-*c).
Table 4.2: The number of iterations for standard k-Means and the number of additional iterations performed by PSO-kMeans, computed as averages over 50 runs of the algorithm.

<table>
<thead>
<tr>
<th>Problem</th>
<th>k-Means</th>
<th>PSO-kMeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d-4c</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>2d-10c</td>
<td>28</td>
<td>71</td>
</tr>
<tr>
<td>2d-20c</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>10d-4c</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>10d-10c</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>10d-20c</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>50d-4c</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>50d-10c</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>50d-20c</td>
<td>23</td>
<td>65</td>
</tr>
<tr>
<td>Iris</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Soybean</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>BCancer</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4.2 presents the number of iterations required by PSO-kMeans to improve the solution returned by the standard k-Means. Generally, the stronger the difference in performance is between k-Means and PSO-kMeans, the higher the number of iterations required to converge for PSO-kMeans is.

Table 4.3 presents the results obtained in the unsupervised scenario. In this scenario we reduce the drawback of bad initialization by running the standard k-Means in the initialization phase of PSO-kMeans for 10 times with random initializations. The solution with the lowest intra-cluster variance is chosen and constitutes the basis for further PSO-kMeans iterations. The table presents averages over 10 complete runs of the algorithm (each run benefiting from 10 different initialization).

The first 4 columns present the results when the best partition is identified in a supervised manner, maximizing the value of the Adjusted Rand Index (which is an external validation criterion). It illustrates once again the significant gain in performance if PSO-kMeans is used. It is worth noticing that indeed, compared with standard k-Means, PSO-kMeans generated partitions with slightly higher numbers of clusters.
Evolutionary Computation in clustering

Table 4.3: Results for unsupervised clustering. For each data set and each algorithm, the ARI and the number of clusters are reported for three partitions: the partition with the highest Adjusted Rand Index (ARI) score, the best partition under Silhouette Width (SW) and the best partition under criterion CritC.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Best ARI</th>
<th>SW</th>
<th>CritC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k-Means</td>
<td>PSO-kMeans</td>
<td>k-Means</td>
</tr>
<tr>
<td></td>
<td>ARI</td>
<td>k</td>
<td>ARI</td>
</tr>
<tr>
<td>2d-4c</td>
<td>0.92</td>
<td>4.02</td>
<td>0.98</td>
</tr>
<tr>
<td>2d-10c</td>
<td>0.83</td>
<td>10.93</td>
<td>0.94</td>
</tr>
<tr>
<td>2d-20c</td>
<td>0.91</td>
<td>19.63</td>
<td>0.93</td>
</tr>
<tr>
<td>10d-4c</td>
<td>0.97</td>
<td>3.99</td>
<td>0.99</td>
</tr>
<tr>
<td>10d-10c</td>
<td>0.92</td>
<td>9.21</td>
<td>0.97</td>
</tr>
<tr>
<td>10d-20c</td>
<td>0.97</td>
<td>20.23</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Even when the partition is chosen using unsupervised criteria, PSO-kMeans still wins the competition with standard k-Means. The Wilcoxon Signed-Rank non-parametric test was applied for all pairs of ARI scores corresponding to (k-Means, PSO-kMeans) under the same criterion. Where differences are significant (at the level 1%) the winner is marked in bold.

All experimental results suggest that PSO-kMeans improves the performance of standard k-Means on all test cases. It achieves this, by forcing the standard algorithm to obey the connectivity principle: neighboring data items should reside in the same cluster. Moreover, the standard k-Means algorithm is sensitive to outliers: the cluster centroids are biased if isolated data items exist because generally the mean is not a stable statistic and extreme values affects it. PSO-kMeans is more robust to outliers which are attracted towards dense regions and do not bias the position of the cluster centroids.

The complexity of a PSO-kMeans iteration is still linear in the number of data items. However, the pre-processing time complexity is $O(n^2)$ as it is necessary to compute the distances among data items.

As the experiments show, the new algorithm does not require parameter tuning to increase performance when dealing with diverse datasets.
4.2.4 Comparative study

The experimental section showed the superiority of our method over standard k-Means. However, we would like to place our method in the wide context of clustering and therefore a comparative analysis with other state-of-the-art clustering methods is required.

To this goal, some problem instances imposing different challenges to clustering algorithms are used: elongated clusters (4.3 a), data with noise (4.3 b), spherical clusters of different volumes (4.3 c) and overlapped clusters (4.3 d). Table 4.4 presents the results obtained by various algorithms.

![Image of data sets imposing different challenges to clustering methods]

Figure 4.3: Data sets imposing different challenges to clustering methods

<table>
<thead>
<tr>
<th>Problem</th>
<th>PSO-kMeans</th>
<th>k-Means</th>
<th>PSO</th>
<th>Single Link</th>
<th>Average Link</th>
<th>Complete Link</th>
<th>Ward</th>
<th>DBSCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>elongated</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>0.00</td>
<td>0.01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>noise</td>
<td>1</td>
<td>0.80</td>
<td>0.93</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>unequal</td>
<td>1</td>
<td>0.84</td>
<td>0.86</td>
<td>1</td>
<td>1</td>
<td>0.10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>overlapped</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4.4: The ARI computed for the datasets presented in Figure 2: our method (PSO-kMeans), standard k-Means, the clustering method proposed in Cui et al. (2005) (PSO), 4 hierarchical algorithms and a density-based method.

Centroids-based methods

The standard k-Means and an existing hybridization of k-Means with PSO Cui et al. (2005) are employed to study the behavior of centroids-based clustering methods relative
Evolutionary Computation in clustering

to PSO-kMeans which injects the connectivity principle into the representative-based approaches for clustering.

Figure 4.4 presents the best partitions obtained with standard k-Means from multiple runs. These partitions are identical to those obtained with the PSO algorithm presented in [Cui et al. (2005)] which performs a global search in the space of possible initializations for k-Means.

![Figure 4.4: Results obtained with standard k-Means](image)

The main drawback of the centroids-based methods becomes obvious: if clusters of elongated shape or of various volumes are involved, these methods fail in retrieving the correct partitions.

In case outliers are present in data and no pre-processing step is used to eliminate them, the centroids are biased and erroneous partitions are delivered.

When the dataset contains spherical overlapped clusters the centroids-based methods outperform other strategies.

Hierarchical methods

Usually, clusters of different shapes do not raise difficulties for hierarchical methods; however, the result is highly dependent on the metric used to measure the similarity between clusters.

For the dataset with elongated clusters, Single link and Ward’s method identify correctly the two clusters. Average link and complete link deliver erroneous results as shown in Figure 4.5.
In case of the dataset with clusters of various volumes, all hierarchical methods performed well, except the Complete link variant.

All hierarchical algorithms identified the noise in case of the data set in figure 4.3 a (noise).

In case of overlapped clusters, no hierarchical method was able to identify the clusters.

Density-based methods

After fine-tuning efforts, DBSCAN identified the clusters in case of the datasets 4.3a, b, c. It failed to identify the overlapped clusters.

Discussion

Because our method takes into account the local structure in data and implements the connectivity principle, it is able to identify clusters of different volumes and shapes. Therefore, it identifies correctly the clusters for the datasets in figure 4.3 a and b, behaving equally well to Single link, Ward’s method and DBSCAN and outperforming all other tested techniques. PSO-kMeans outperforms not only the standard k-Means algorithm. Tests were performed using a centroid method proposed in Cui et al. (2005) which is also based on PSO. As explained in section 4.1, the existing methods based on PSO or Genetic Algorithms behave like an upper bound for the standard k-Means: they deliver (in the best case) the partition retrieved by a k-Means algorithm if the latter is supplied with the best initialization.

Our method is still able to identify the clusters when outliers are present in data (the dataset in figure 4.3 c). This behavior is due to the change in representation for the outlier data items, which are attracted towards denser regions. Again, the performance
of PSO-kMeans is comparable to hierarchical methods and density based methods and outperforms the centroids-based methods.

For the data set with overlapped clusters, the performance of our method is comparable to that of the standard k-Means and significantly superior to that of hierarchical methods and density-based methods. In contrast with the other test-cases, the dataset in figure 4.3 illustrates the positive effect of the centroid approach incorporated in our method.

Benefiting from the global view over the data in addition to the connectivity principle, the experiments show that our method is able to outperform the state-of-the-art clustering methods or behaves equally-well in the worst case.

4.2.5 Concluding Remarks and Future Work

A hybridization of the standard k-Means algorithm with a technique from Swarm Intelligence was proposed, with the aim of enhancing the performance of the traditional clustering method. The new algorithm modifies the representation of the data items in order to implement the connectivity principle for clustering. The changes in representation lead to changes in the distribution of distances between data items. Therefore, the new algorithm can be easily extended to perform semi-supervised clustering. The additional information available in the form of similarity/dissimilarity pairwise constraints can be easily incorporated in the PSO iterations to simulate metric learning along with the clustering process. This hypothesis constitutes the subject of our future work.

4.3 Community detection in social networks

This section is concerned with a problem in information organization and retrieval within Web communities [Breaban et al. (2009)]. Most work in this domain is focused on reputation-based systems which exploit the experience gathered by previous users in order to evaluate resources at the community level. The current research focuses on a slightly different approach: a personalized evaluation system whose goal is to build a flexible and easy way to manage resources in a personalized manner. The functionality of such a model comes from local trust metrics which propagate the trust to a limited level into the system and, finally, lead to the appearance of minorities sharing some
similar features/preferences. A modified PSO procedure is designed in order to analyze such a system and, in conjunction with a simple agglomerative clustering algorithm, identify homogenous groups of users.

4.3.1 Motivation

The World Wide Web stores great amounts of data. Any kind of resources can be published by anyone: a diary published within a blog, a track that a user wants to share with the others, a study that the author wants to make public. In this context, the main problem is not the lack of good quality resources, but their retrieval, organization and maintenance. This study is part of a recently proposed approach to improve the performance of existing management systems within online communities. An online community can be a forum, a group of blogs or other social system which allows users to interact and to share resources.

The problem we tackle is related to the Web Collective Intelligence spectrum, where many study directions can be envisaged. Much work is carried out nowadays in order to design strategies to rate the resources or to build recommendation systems.

One example is Google Page Rank (A. Langville, C. Meyer, 2006) which, based on some complex algorithms, assigns ranks to Web pages as a measure of their ”global importance”.

In the case of recommendation systems, the shopping history and users’ characteristics are being collected and based on this information the system makes proper recommendations (e.g. Amazon, Netfix).

One active research direction is represented by the online communities who rely on the mechanisms offered by trust and reputation systems. A trust and reputation system exploit the users’ experience (resulted from the previous interactions) in order to establish some user-user and user-resource evaluation/trust levels. In the literature there are two categories of algorithms to calculate trust: global and local (also called global trust metrics, respectively local trust metrics). In Massa and Avesani (2007) the advantages and the drawbacks of both approaches are presented.

Currently, most of the approaches focus on the first category. These algorithms aim at quantifying the importance of an user/resource at the community level. These ap-
approaches assume that all the users in the community have similar ideas. This assumption lead in the extreme case to a phenomenon described as ”tyranny of the majority”.

Few approaches are concerned with the development of local trust metrics \cite{Golbeck2005, Massa2007, Ziegler2005}. The local trust metrics propagate trust in a limited manner. Each user is connected only to a subset of users/resources. In the extreme case, a segmentation of the society into isolated groups may be achieved.

The challenge consists in designing a system which balances out the two extreme situations.

The work presented in this section is conducted within a recently proposed system based on local trust mechanisms \cite{Alboae2008}. A general model of calculating trust and reputation was proposed, which allows a user from the community to have a personalized view on the system. Interesting elements of analysis of these models concern not just users but also groups of users. As shown in the following sections, we focus our research on the techniques which lead to obtaining relevant groups of users, so that the personalized group vision provided by the model to be accurate as well.

The problem is strongly related to community finding within social networks; this is a topic of great interest, intensively studied in the last years. The problem is formally defined as a graph problem: identify groups of vertices within which connections are dense, but between which connections are sparser. Existing methods are based on divisive strategies which compute centrality indices to find community boundaries \cite{Girvan2002} or make use of the hierarchical clustering scheme \cite{Clauset2004}. Recently, evolutionary algorithms were proposed to tackle this problem \cite{Gog2007}. The method proposed in this section, although designed for the particular case of local trust networks, can be applied for general social graphs as well.

Section 4.3.2 describes the trust and reputation system and introduces the problem we analyze: the detection of homogenous groups of users. In section 4.3.3 this problem is analyzed and a solution which is based on Particle Swarm Optimization is described. Section 4.3.4 presents the experimental results and section 4.3.6 concludes with a brief discussion on the results and some future directions.
4.3.2 The engine ratings of a trust and reputation system

In [Alboaie (2008)] a personalized evaluation system was proposed, whose goal is to build a flexible and easy way to manage resources in a personalized manner. The purpose of the proposed model is to offer a flexible mechanism to filter irrelevant resources for users.

The system is designed to be used in an online community. Therefore, the main constituents are the users and the resources (their definition is made according to the definition given by T. Berners-Lee, 1998). A relation $worth : U \times U \rightarrow (0, 5]$ over the set of users is introduced: it is a measure of the level of trust that a user associates to any other user; simplified, $worth(U_i, U_j)$ may quantify the interest expressed by user i for the resources posted by user j. The users assign explicitly one another some ratings which are expressed as real numbers in the interval (0,5]. The five unit-length sub-intervals represent five different levels of trust ranging from "useless/spam" to "exceptional". These values must be used further by the system in order to filter relevant resources for users' queries. Since one user rates explicitly only a subset of the users in community, an algorithm was proposed which propagates these evaluations over the set of users and computes implicit ratings. Such algorithms are called local trust metrics within the Web community.

The current research is focused on identifying homogenous groups of users in this system. For large communities, this analysis is highly motivated:

- Exploratory data analysis by means of clustering is a coherent approach for gathering a general view of the system and even to get insights into its dynamics;

- For small communities (small worlds) the computation of the rating’s nucleus gives a proper solution of modeling. When communities with a great number of members are involved, the computation cost is very high. As a solution, an extension of the existing model may be introduced. The idea consists of grouping the members of the community into homogenous groups; these groups are further integrated as entities which can express their level of trust among them and can have a reputation. Further, each user will assume the trust statements of the group it belongs to.

Two types of groups can be formed within the presented system: explicit groups and implicit groups. Creating explicit groups is a frequently met phenomenon in the present online communities. The explicit groups are created by users and anyone can create, adhere to or leave such a group.
The implicit groups are to be created by the system based on the user-user evaluations. In this case, using automatic unsupervised techniques, clusters of users will be obtained. Users from the same cluster are supposed to share the same points of view on the community/resources. Consequently, the resources may be clustered in relation to the users who added them in the system. This way of grouping allows the establishment of a quick correspondence between the users clusters and the resources clusters. The motivation for choosing to create such groups is simple: once user A rates highly user B, it would make sense that at some moment it will be interested in the resources posted by user B. Therefore, we get to the level when the system implicitly recommends resources to the user.

4.3.3 The algorithm

This section identifies the main challenges raised by the problem at hand: retrieve homogenous groups of users based on the expressed preferences. The solution, based on the Swarm Optimization paradigm is detailed.

Problem statement

The clustering problem is generally formulated in terms of an input consisting of \(n \) data items, each described by \(m \) numerical attributes. An alternative representation is a \(n \times n \) symmetric matrix expressing the similarity between pairs of data items. Unfortunately, none of these representations and consequently no existing clustering algorithm are straightforward applicable in our case.

In our system, a data item corresponds to a user; each user can be characterized by a vector of length \(2n \) containing the ratings it gives to other users in the system and
the ratings it receives. Performing clustering based directly on these features would be unfeasible, mainly due to the following drawbacks:

- High dimensionality: the size of the feature space is a multiple of the size of the data set;
- Defining a metric over such a feature space is not straightforward. The similarity between 2 users A and B should be computed with regard to the following assumptions:
 - personal preferences: A is similar to B if A and B rate in the same manner the users within the system;
 - obtained ratings: A is similar to B if they are rated similarly by a large group of users;
 - direct interactions: a high rating given by user A to user B expresses the affinity of user A for user B and therefore, the tendency for user A to adhere to user B’s cluster.

Any existing metric applied to the mentioned feature vectors space would consider the first two clustering criteria but neglect the most important one - the third criterion.

In previous work, groups were identified within this system using hierarchical clustering \cite{Alboae and Barbu 2008}. Usually, the users evaluate and are evaluated by a different number of users. In order to reduce dimensionality, the feature vector for user A is constructed only over the users it interacts with: the users A rates and the users which rate user A. Therefore, the feature vectors have different lengths and a special kind of distance metric derived from the Hausdorff metric for sets is used. Although the results are encouraging, this approach ignores the third criterion detailed above.

In order to eliminate the above mentioned drawbacks, we designed a clustering procedure which is based on the third criterion, incorporates the second criterion explicitly and achieves the first one implicitly. The users are modeled as particles in a PSO algorithm; they move within a two-dimensional space creating a topology that reflects the affinities among them. A simple agglomerative clustering procedure implementing the connectivity principle is then applied to cluster the points in the two-dimensional space using the Euclidean metric: any two points at distance lower than a given threshold will share the same cluster.
The embedding procedure

A modified version of PSO is used in our work in order to obtain a two-dimensional representation of the community of users, representation which reflects the interactions/affinities among them. This two-dimensional embedding can be used to visualize the community from a user-oriented perspective: users which give high ratings one another, expressing in this way some common views, will be located close in the two-dimensional Euclidean space. Performing further a simple clustering procedure in this Euclidean space, somewhat homogenous groups of users can be easily identified.

In our approach, the users become particles in a swarm, within a two-dimensional Euclidean space. The mapping procedure is inspired from the PSO algorithm but two essential modifications were introduced.

The motion rules are not governed by a fitness function; the expressed preferences in form of ratings the users give one another guide individual trajectories towards a stable configuration. This is one essential deviation from the basic PSO algorithm: the particles are not assigned unique, unanimously accepted fitness values, based on the position they occupy in the search space. Each particle has its own view on the swarm and its personal ”goals”, which are expressed as personalized fitness assignments to other particles. There is no global best particle in the swarm or in a subpart of the swarm, but one distinct best particle for each member of the swarm. However, these personalized fitness evaluations do not counteract the emergence process the general Swarm Intelligence techniques are based on: simple rules describing individual trajectories lead to novel and coherent structures, patterns and properties during the process of self-organization (Goldstein, 1999).

Another deviation from the PSO basic scheme is a change in motion rules. Except the attraction towards the best particle, the remaining two rules are re-defined. The procedure is detailed below.

In an initialization step, each user is assigned a randomly-generated point in a two-dimensional space; these points are to be further considered as position vectors of the particles in a swarm. Then, an iterative process aims at organizing the particles, such that the users with ”strong interactions” will be matched to close points in the Euclidean space. In the sequel, the terms particle/user are interchangeable: both denote individuals in a swarm, characterized by a position vector in a two-dimensional space and a velocity vector; an $n \times n$ matrix stores the pair-wise affinities in the form of real numbers in
Evolutionary Computation in clustering

the interval [0,5], designating the ratings the users/particles give one another. The rules which guide the particles are described next:

- Each particle x_i moves toward the preferred particles. To this end, a weighted centroid is computed for the k particles highest rated by particle x_i. Considering these rates as fitness values, the centroid can be viewed as the social factor in PSO - the tendency to move towards the best particle in the neighborhood. The centroid is computed as:

$$
\overrightarrow{g}_i = \frac{\sum_{j=1}^{k} mark(i, j) \cdot x_j}{\sum_{j=1}^{k} mark(i, j)}
$$

This move, based only on the direct interactions, leads to indirectly fulfilling the first requirement for a meaningful clustering. Two users which give identical ratings move toward the same point in the two-dimensional space; therefore, the distance between them is minimized.

- Each particle moves towards the particles that rate it. To this regard, a weighted centroid \overleftarrow{g}_i is computed as previously, from the particles that rate particle x_i: This rule is necessary in order to accomplish the second requirement for clustering: two users which are rated identically should reside close within the two-dimensional representation.

- Each particle moves away from k neighbors it did not rate or it assigned a low rate and vice versa. The neighborhood is defined with the aid of a threshold: the maximum distance in the two-dimensional space within which the particles interact. The centroid over k random particles in the neighborhood is thus computed (denoted as \overline{g}_j). The particles reach a stable configuration when no repulsion forces exist, i.e. when no low-rated particles are situated in the neighborhood; therefore, there is no need to increase the computational cost with unnecessary sorting operations and the random selection in the neighborhood is used.

The formulas used to update the particle i at iteration t are:

$$v_i^t = w_1 \cdot (\overrightarrow{g}_i^t - x_i^{t-1}) + w_2 \cdot (\overleftarrow{g}_i^t - x_i^{t-1}) + w_3 \cdot (x_i^{t-1} - \overline{g}_j^t)$$
\[x_i^t = x_i^{t-1} + w_{max} \cdot v_i^t \]

The parameters and the stopping criterion are empirically determined.

The PSO procedure is followed by a single link agglomerative procedure which can be stopped when a fixed number of clusters is achieved or when the distance between clusters exceeds some threshold. Since the two-dimensional representation obtained with PSO can be visually analyzed, the number of clusters can be specified. Anyway, the use of k-Means algorithm is not recommended: as shown in the experimental section, the resulted clusters have different shapes and volumes and even some isolated points may be obtained.

4.3.4 Experiments

Parameters settings

In order to obtain a first empirical setting of PSO parameters, small problem instances were created; the resulted two-dimensional maps are validated by analyzing the ratings table. One such instance is represented in Figure 4.7; two maps created using different initializations are illustrated in Figure 4.8.

Figure 4.7: The graphs representing a community of 14 users; A: the graph containing the explicit ratings; B: the graph containing both explicit and implicit ratings; the continue arcs represent the explicit ratings and the dashed arcs the implicit ratings.

The parameters values were set as follows:
Figure 4.8: Two different mappings corresponding to different initialization

- $w_1 = 0.5$; the direction of any particle is dictated mainly by the particles it rates;
- $w_2 = 0.15$; a small value for this parameter enforces each particle to stay relatively close to the particles it was rated by;
- $w_3 = 0.25$; a moderate repulsion force active below a threshold (set to 1) which defines the neighborhood of a particle, determine unrelated particles to stay far away from one another; the repulsion centroid is computed over at most $k = 5$ neighbors.
- $w_{\text{max}} = 0.15$.

A threshold concerning the ratings was used: only ratings greater than 2 denote strong affinities and consequently attraction forces.

For small instances, as the one illustrated in Figure 4.7, the algorithm reaches a stable configuration after 50 iterations. For larger communities, more iterations are required until a stable configuration is reached. As a halting criterion, an average over velocities vectors may be computed and compared to a scalar threshold: small velocities correspond to stable configurations. We look for the number of iterations after which no major changes on the two-dimensional map are observed.

As one can observe in Figure 4.8, the initial configuration influences the orientation of clusters and, to some extent, their relative positions; on the other hand, the same clusters are detected in repeated runs (different initializations) and within each cluster the components are arranged under the same topology.
These first empirical results are illustrative for the convergence of the algorithm: repeated runs involving different initial configurations lead (after a limited number of iterations) to similar stable configurations. The similarity between configurations is measured in terms of detected clusters: the number of clusters, the constituents of each cluster and even the shape of the clusters. All these elements illustrate topology preservation.

A more in-depth analysis is necessary in order to verify the agreement between the resulted mapping and the graph of ratings. In Figure 4.8 due to the single-directional high ratings, one linear cluster is formed over particles 1, 3, 8, 11 and 10. Particles 5 and 13 end up close together due to bi-directional (reciprocal) high ratings; following them at greater distance particles 6 and 7 are situated. Due to the lack of any evaluations/ratings, particles 2, 9 and 14 are isolated in different regions of the map.

Data generator

Once empirically tuned on synthetic small data sets, the method needs to be tested on larger (real) data sets. Unfortunately, existing systems/communities do not make public the data and no benchmark is available. Previous studies on local trust metrics report some tests on data extracted from Epinions community (Massa and Avesani (2007)). Ziegler (2005) created synthetic data for tests.

In order to simulate real communities, we designed a somewhat complex data generator. It takes as input an xml file which can be customized to generate different categories of explicit evaluations. The following parameters are introduced:

- users - the number of users in the community;
- goodUsers - an approximation of the number of ”good” users in the community; that is, the number of users who receive the majority of good evaluations;
- minMarksCount - the minimum number of evaluations realized by an entity; for a better observation of the dynamics of spreading the trust each user must interact with the community.
- goodMarksThreshold - the threshold which separates the good evaluations from the worse ones; this parameter is further used in the clustering procedure;
• userRatingsDensity - a percentage which represents the density of the community’s network: how many explicit evaluations are made in the system (from a total of \(n^2 \) possibilities).

• goodUserMaxDivergence - a percentage representing the number of bad marks that can be awarded to an user already designated as being "good".

Experimental settings

As shown in section 4.3.4, the final mapping is strongly dependent on the initial configuration. Due to random initializations, the stability of the method must be investigated. This analysis is compulsory for probabilistic heuristics and generally consists in computing the variance of solutions obtained in repeated runs.

As the main goal of the method is to identify meaningful clusters, we study the stability of the method with regard to the detected clusters.

On small problem instances, as the one presented in section 4.3.4, the results are easy to analyze visually. For larger problem instances the analysis we conducted consists of the following steps:

• run several times PSO-mapping on the same problem instance with random initializations;

• apply a deterministic clustering algorithm on each mapping;

• measure the similarity between the clustering solutions (the partitions) and compute an average.

To perform clustering in the two-dimensional space we designed a single link agglomerative clustering procedure; the procedure stops when the distance between classes exceeds a given threshold.

As measure of similarity between two partitions we used Adjusted Rand Index.

Problem instances were generated for different parameters of the data generator. Tests were performed on problem instances consisting of 20, 50 and 100 users.

In each case, 5 problem instances were generated; PSO and the subsequent clustering procedure were applied five times on each problem instance. The similarity measure
was computed for each pair of the resulted partitions and the average over all pairs is reported.

Experimental results

Table 4.5 presents the experimental results over several classes of problem instances generated for different settings of the data generator. The parameters of the data generator are specified in the following order: users-goodUsers-userRatingsDesity. The minimum number of evaluations given by a user was set to 1. In all experiments the value for goodUserMaxDivergence was set to 10% ; this defines a user as being ”good” if more than 90% of the ratings it receives are greater than goodMarksThreshold parameter value.

As the main purpose of the generator is to simulate real online communities, the average number of obtained clusters is computed in order to study their dynamics.

<table>
<thead>
<tr>
<th>PROBLEM INSTANCE</th>
<th>ARI</th>
<th>NUMBER OF CLUSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-15-0.3</td>
<td>0.9611</td>
<td>3</td>
</tr>
<tr>
<td>20-10-0.3</td>
<td>0.8553</td>
<td>8</td>
</tr>
<tr>
<td>50-35-0.5</td>
<td>0.9376</td>
<td>3</td>
</tr>
<tr>
<td>50-20-0.5</td>
<td>0.8853</td>
<td>4</td>
</tr>
<tr>
<td>50-35-0.3</td>
<td>0.7969</td>
<td>4</td>
</tr>
<tr>
<td>50-20-0.3</td>
<td>0.6872</td>
<td>7</td>
</tr>
<tr>
<td>50-35-0.1</td>
<td>0.7694</td>
<td>12</td>
</tr>
<tr>
<td>50-20-0.1</td>
<td>0.8753</td>
<td>16</td>
</tr>
<tr>
<td>100-65-0.1</td>
<td>0.7832</td>
<td>14</td>
</tr>
<tr>
<td>100-50-0.1</td>
<td>0.7634</td>
<td>17</td>
</tr>
<tr>
<td>100-35-0.1</td>
<td>0.6323</td>
<td>22</td>
</tr>
<tr>
<td>100-35-0.3</td>
<td>0.8251</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.5: Average Adjusted Rand Index and the average number of clusters for different classes of problem instances

The high ARI values reported in Table 4.5 indicate coherent/similar partitions obtained at repeated runs, which further suggest stable and similar mappings produced.
by the PSO procedure. Anyway, the mapping algorithm is influenced to some extent by the initial configuration and the stability of the algorithm seem to depend on the parameters of the problem.

As expected, the stability of the mapping procedure based on PSO generally decreases with the size of the problem, as the number of possible configurations grows exponentially.

One important parameter which acts in the opposite way is the ratings density. When there are many evaluations in the system, complex interactions dictate the dynamics of the system and, consequently, of the swarm in the mapping procedure. The PSO particles are subjected to more restrictions regarding their motion in the two-dimensional space. To reach a stable configuration a larger number of iterations is needed but the outputs are less sensitive to the initial configuration.

Increasing the number of good users in the system, some cluster nucleus appear and well-defined clusters are to be formed. Consequently, the particles concentrate in dense clusters where the repulsion forces are minimized and the algorithm is more stable for such configurations.

Some general conclusions regarding the influence of the mentioned parameters on the number of clusters may be drawn.

The number of good users in the system has a great influence on the number of clusters. In order to coexist more good users in the system, several users have to rate them high. This lead to fewer larger clusters.

The same influence is observed for the userRatingsDensity parameter: few explicit ratings in the system determine sparse configurations and consequently, many small clusters.

The method can be used to study further the dynamics of the system. Many scenarios can be imagined. For example, one interesting case study concerns the impact of a new user’s evaluations on the system. The structure of clusters and, furthermore, a visualization of the embedding produced with the proposed algorithm are useful tools for such analysis.
4.3.5 Applications to social networks

With minimal modifications, the method can be applied to identify communities in social networks.

To study its performance, the American Football data set introduced in Girvan and Newman [2002] is used. The data set can be represented as a graph consisting of 115 nodes and 616 edges: the nodes represent football teams and the edges represent regular season games between the two teams they connect. The teams are divided into 11 "conferences". The teams play an average of about 7 intra-conference games and 4 inter-conference games.

We apply the PSO/clustering method described previously with the aim of identifying the "conferences". In order to benefit from the previous scenario, the original problem graph is transformed into a weighted digraph: each edge is replaced by two opposite arcs and equal weights are assigned to all arcs. Under this representation, the second term in the PSO-mapping algorithm is identical to the first term and therefore, may be eliminated. Equal weights (0.5) were set for the two remaining terms. A run for the PSO-mapping procedure consists of 500 iterations; the subsequent single link clustering procedure is stopped when the cluster inter-distance exceeds 0.75 (3/4 reported to the activation threshold for the repulsion force which is set to 1).

In order to compare the results obtained by our method with the actual constitution of the "conferences", an average over 10 runs for the Adjusted Rand Index was computed; the obtained value of 0.7763 indicate a close match between the generated partitions and the actual partition. The divergence is mainly due to a higher number of detected clusters (15 on average) and only to a little extent is due to wrong allocations. To illustrate this, the mapping and the resulted clusters for a low-performance run (ARI=0.71) are presented in Figure 4.9.

The mapping takes the regular form of rectangular lattice. Clusters 0, 1, 4 and 8 are matched perfectly to the real partition. Each one of the actual classes 2, 3, 6 and 9 are divided by our mapping into two adjacent clusters. One team from class 11 was misclassified. Regarding class 7, along with the correct members, other teams were incorrectly added; the resulted cluster is sparser, suggesting incorrect matching. Members of classes 5 and 10 were incorrectly mixed.

The obtained results indicate that the presented method is an appropriate approach for community detection in social networks.
4.3.6 Concluding Remarks and Future Work

The main aim of this section is to propose a method to get insights into the structure and dynamics of online communities which operate on mechanisms of trust. An embedding of the community into a two-dimensional Euclidean space, which reflects affinities among users, allows by means of simple clustering procedures to identify natural groups. As a basis of this method, Particle Swarm Optimization is employed: the simple individual rules which lead to self-organization in complex systems (the emergence process) fit perfectly to this problem.

The identification of cohesive communities by means of clustering procedures is a key process in social network analysis. The current approach can be applied to general social graphs as well.

As future work, the mapping/clustering procedure will be extended by introducing direct resources evaluations in the current local trust network.

4.4 Genetic-entropic clustering

This section addresses the clustering problem given the similarity matrix of a data set [Breaban et al.]. By representing this matrix as a weighted graph we transform this problem into a graph clustering/partitioning problem which aims at identifying groups of strongly inter-connected vertices. We define two distinct criteria with the aim...
of simultaneously minimizing the cut size and obtaining balanced clusters. The first
criterion minimizes the similarity between objects belonging to different clusters and is
an objective generally met in clustering. The second criterion is formulated with the aid
of generalized entropy. The trade-off between these two objectives is explored using a
multi-objective genetic algorithm with enhanced operators. As the experimental results
show, the Pareto front offers a visualization of the trade-off between the two objectives.

4.4.1 Graph clustering

In clustering the data items can occur either as tuples, which are ordered sequences of
categorial or numerical values, or as simple objects for which only pairwise similarities
or dissimilarities are provided. The first kind of layout offers more information and is
suitable to any clustering algorithm once an appropriate metric is chosen. The second
kind cannot be supplied to any clustering algorithm (i.e. k-Means), but eliminates
one difficult step in unsupervised clustering analysis - the definition of an appropriate
similarity measure. The transition from the first kind of layout to the second is trivial
when a similarity function is defined; the backward transition can be performed to some
extent using multi-dimensional scaling algorithms.

When the similarity matrix of a dataset is given, a straightforward representa-
tion of the problem instance is a weighted graph, having the objects as vertices and
weighted edges expressing the similarity between objects. This leads to a graph cluster-
ing/partitioning problem which aims at identifying groups of strongly inter-connected
vertices.

There exist several formal definitions of graph clustering, depending on the practical
application and domain where the problem originates. These variations are reflected in
the graph structure and in the objectives aimed to be optimized. A survey on various
problem definitions and methods for graph clustering is presented in Schaeffer (2007).

The graph clustering problem this section addresses has important applicability in
VLSI circuit design, image processing, and distributing workloads for parallel computa-
tion. A formal definition is given next.

A similarity space is a pair \((S, w)\), where \(w : S \times S \rightarrow [0, 1]\) is a function such that

(i) \(w(s, t) = w(t, s)\) for every \(t, s \in S\);

(ii) \(w(s, s) = 1\) for every \(s \in S\).
A similarity space \((S, w)\) can be regarded as a labeled graph \(G = (S, E, w)\), referred to as the similarity graph, where the set of edges \(E\) is defined as
\[
E = \{(x_i, x_j) \mid x_i, x_j \in S \text{ and } w(x_i, x_j) > 0\}.
\]

In other words, an edge exists between two vertices only if they have a positive similarity.

If \(S = \{x_1, \ldots, x_n\}\) is a finite set the dissimilarity \(w\) is described by a symmetric matrix \(W \in \mathbb{R}^{n \times n}\), where \(w_{ij} = w(x_i, x_j)\) for \(1 \leq i, j \leq n\).

A \(k\)-way clustering of a finite similarity space \((S, w)\) is a partition \(\kappa = \{C_1, \ldots, C_k\}\) of \(S\). The sets \(C_1, \ldots, C_k\) are the clusters of \(\kappa\). We seek a \(k\)-way partition of \(S, \kappa\) such that

(i) the cut size (i.e. the sum of weights of edges between clusters in the similarity graph) is minimal, and

(ii) \(|C_p| \approx |C_q|\), for \(1 \leq p, q \leq k\), which means that the sizes of the clusters are as equal as possible.

The first objective is generally met in any clustering problem: the elements belonging to different clusters should be dissimilar. In network applications this would correspond to minimizing the communication time. The second objective expresses a load balancing constraint, inherent in network applications.

This multi-objective problem was intensively addressed in literature in the last thirty years. One of the earliest approaches is the method obtained by Kernighan and Lin (1970) which refines a given (randomly generated) partition in a greedy manner by reallocating pairs of nodes between clusters; like all greedy optimizers, this is a local improvement algorithm. Several improvements with regard to time complexity were later proposed. The most used methods are recursive algorithms: in a first step a two-way partitioning is obtained after which, each of the clusters is bisected to obtain a four-way partitioning and the process continues until the desired number of clusters is reached. Recursive spectral bisection algorithms (see Simon (1991)) are known to deliver good solutions but at high computational cost because they require eigenvector computations.

To deal with large graphs, multilevel algorithms were proposed. They consist basically of three phases: coarsening, partitioning and uncoarsening. In the coarsening phase the graph is compressed by successively collapsing nodes. A partitioning proce-
Evolutionary Computation in clustering

A procedure (such as the one obtained by Karypis and Kumar (1998) or a spectral method presented by Barnard and Simon (1993)) is applied on the coarsened graph. In the uncoarsening phase, a partition is built for the original graph by assigning the collapsed nodes to the same cluster; a costless refining phase may be used at this level.

An extensive state-of-the-art of the methods and comparative studies can be found in Fjällström (1998), Karypis and Kumar (1998) and Alpert (1998).

Because of the multi-objective nature of the problem, we tackle the graph partitioning problem with a multi-objective genetic algorithm with enhanced operators. The benefits of such an approach are obvious: instead of delivering a single solution, a set of several non-dominated solutions approximating the Pareto front is returned. As the experimental results show, the Pareto front offers a visualization of the trade-off between the two objectives; the shape of the Pareto front offers valuable information for the identification of the optimum solution.

The remaining of this section is structured as follows. Section 4.4.2 examines the two objectives which have to be optimized as stated in the problem definition. Section 4.4.3 provides a brief survey on the genetic algorithms for clustering with an emphasis on the multi-objective formulation; the representation and the operators we used are detailed. Section 4.4.4 presents experimental results.

4.4.2 A multi-objective formulation

Let \(\kappa = \{C_1, \ldots, C_k\} \) a clustering of the objects of the set \(S = \{x_1, \ldots, x_n\} \). The matrix \(X \in \mathbb{R}^{n \times k} \) defined by

\[
x_{ip} = \begin{cases}
1 & \text{if } x_i \in C_p, \\
0 & \text{otherwise},
\end{cases}
\]

represents the clustering \(\kappa \). Note that each row of this matrix contains a single 1 and that the total number of 1 entries equals the number \(n \) of elements of the set \(S \).

The matrix \(Y = X'X \in \mathbb{R}^{k \times k} \) is given by

\[
y_{pq} = \sum_{i=1}^{n} x'_{pi}x_{iq} = \sum_{i=1}^{n} x_{ip}x_{iq}
\]

(4.2)
for $1 \leq p, q \leq k$. Since any two clusters C_p, C_q are disjoint, this is a diagonal matrix. Its
diagonal elements are $y_{pp} = |C_p|$ for $1 \leq p \leq k$.

Let $G = (S, E, w)$ be the similarity graph of S defined as an undirected graph having S as its set of vertices. The symmetric matrix $W \in \mathbb{R}^{n \times n}$ is defined by

$$w_{ij} = \begin{cases} w(s_i, s_j) & \text{if } i \neq j, \\ 1 & \text{if } i = j, \end{cases}$$

for $1 \leq i, j \leq n$.

Let $Z = X'WX \in \mathbb{R}^{k \times k}$. We have

$$z_{pq} = \sum_{i=1}^{n} \sum_{j=1}^{n} x'_{pi} w_{ij} x_{jq} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ip} w_{ij} x_{jq}$$

for $1 \leq i, j \leq n$. Therefore, for the distinct clusters C_p, C_q, z_{pq} is precisely the value of $\text{cut}(C_p, C_q)$. Note also that

$$z_{pp} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ip} w_{ij} x_{jp}$$

equals the sum of the similarities between the objects of the clusters C_p. Clearly, to achieve maximal intra-clustering cohesion and minimal inter-clustering dissimilarity it is necessary that the trace of the matrix Z (that is, the sum of the diagonal elements of Z) to be maximal and the sum of the off-diagonal elements of Z to be minimal,

Since Z is a non-negative matrix, its norm $\| Z \|_1 = \sum_{pq=1}^{k} \sum_{q=1}^{k} |z_{pq}|$ coincides with the sum of its elements. Moreover, $\| Z \|_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}$ and is constant for a given similarity matrix W, regardless of the clustering X. Therefore, the total weight of the inter-cluster cuts equals $\| Z \|_1 - \text{trace}(Z)$ and minimizing it is equivalent to maximizing the total within clusters similarity which is given as $\text{trace}(Z)$.

We use a novel approach to insure that the clusters of κ are balanced. To this end, we use the generalized entropy of partitions of finite sets (see Simovici and Djeraba (2008)).
For a partition $\kappa = \{C_1, \ldots, C_k\}$ of a set S and a number $\beta > 1$, the β-entropy is defined by

$$H_\beta(\kappa) = \frac{1}{1 - 2^{1-\beta}} \left(1 - \sum_{p=1}^{k} \frac{|C_p|^\beta}{|S|}\right).$$

Note that $\lim_{\beta \to 1} H_\beta(\kappa) = -\sum_{p=1}^{k} \frac{|C_p|}{|S|} \log_2 \frac{|C_p|}{|S|}$. In other words, the Shannon entropy is a special case of the generalized entropy.

An important special case of the entropy is obtained for $\beta = 2$. We have

$$H_2(\kappa) = 2 \left(1 - \sum_{p=1}^{k} \frac{|C_p|^2}{|S|}\right),$$

and this is the well-known Gini index, $gini(\kappa)$ used frequently in statistics.

The largest value of $H_\beta(\kappa)$ is obtained when κ consists of singletons, that is, when $k = n$ and $\kappa = \{\{s_i\} \mid 1 \leq i \leq n\}$ and is $H_\beta(\kappa) = \frac{1}{1 - 2^{1-\beta}} \left(1 - \frac{n}{|S|}\right)$; the least value of $H_\beta(\kappa)$ is obtained for $\kappa = S$ and equals 0.

For a prescribed number k of blocks (where k is a divisor of $|S|$), the maximum value of $H_\beta(\kappa)$ corresponds to a partition having blocks of equal sizes. If k is not a divisor of S, then the more uniform the sizes of the cluster, the larger is the value of $H_\beta(\kappa)$. This indicates that maximization of the entropy can be used as a criterion for ensuring the uniformity of the cluster sizes. We will use the Gini index of κ because it presents certain computational advantages as shown next.

Theorem 4.4.1 Let $\kappa = \{C_1, \ldots, C_k\}$ a clustering of the objects of the set $S = \{x_1, \ldots, x_n\}$ and let $X \in \mathbb{R}^{n \times k}$ be the characteristic matrix of the clustering. We have

$$gini(\kappa) = 2(1 - \text{trace}(X'XX'X)).$$

Proof. The definition of the matrix Y implies $\text{trace}(X'XX'X) = \text{trace}(Y^2)$. Since Y is a diagonal matrix, we have

$$\text{trace}(Y^2) = \sum_{p=1}^{k} |C_p|^2.$$
by Equality (4.2). Thus,

$$gini(\kappa) = 2 \left(1 - \sum_{p=1}^{k} \frac{|C_p|^2}{|S|}\right) = 2(1 - \text{trace}(Y^2)) = 2(1 - \text{trace}(X'XX'X)).$$

Thus, two objectives can be used to find a balanced k-clustering κ:

(i) minimization of the total cut of the clustering partition, which amounts to minimization of

$$f_1(X) = \| Z \|_1 - \text{trace}(Z) = \| X'WX \|_1 - \text{trace}(X'WX) \quad (4.3)$$

(ii) maximization of cluster uniformity, which is equivalent to the maximization of the Gini index of κ, or to the minimization of

$$f_2(X) = \text{trace}(X'XX'X) \quad (4.4)$$

We seek X subjected to the conditions $x_{ip} \in \{0, 1\}$ for $1 \leq i \leq n$ and $1 \leq p \leq k$. Depending on the aspects we need to emphasize in the clustering we can use a convex combination of these criteria:

$$\Phi_a(X) = a f_1(X) + (1 - a) f_2(X)$$

$$= a \left(\| X'WX \|_1 - \text{trace}(X'WX)\right) + (1 - a) \text{trace}(X'XX'X),$$

where $a \in [0, 1]$.

To simultaneously minimize criteria f_1 and f_2, also a non-linear combination can be used:

$$\Psi(X) = \frac{f_1(X)}{n^2 - f_2(X)} = \frac{\| X'WX \|_1 - \text{trace}(X'WX)}{n^2 - \text{trace}(X'XX'X)}. \quad (4.5)$$

The criterion $\Psi(X)$ measures the average link between clusters, because the denominator is proportional with the number of pairs of items that occur in distinct clusters.
4.4.3 The algorithm

We use a genetic algorithm (GA) to deal with the graph clustering problem, because such algorithms provide a good exploration of the search space and are able to deliver high-quality solutions.

Real-world problems necessitate most of the times the optimization of several conflicting objectives. Usually, this is achieved by combining the objectives into a single function. However, some objectives may be more important than others for a given problem and their relative importance cannot be established beforehand. Multi-objective GAs optimize simultaneously several objectives and return a set of non-dominated solutions which approximate the Pareto front. For a problem involving m objectives denoted with f_i, $1 \leq i \leq m$ which have to be minimized, a solution x is dominated by a solution x^* if

$$f_i(x^*) \leq f_i(x), \forall i = 1..m, \text{ and } \exists 1 \leq j \leq m \text{ s.t. } f_j(x^*) < f_j(x).$$

The Pareto optimal set of solutions X^* consists of all those solutions for which no improvement in an objective can be made without a simultaneous worsening in some other objective. In other words, the Pareto front consists of all solutions that are not dominated by any other solution.

The multi-objective scheme we use to tackle the graph clustering problem is PESA-II obtained by Corne et al. (2001). The algorithm maintains two populations of solutions. An external population stores mutually non-dominated clustering solutions, which correspond to different trade-offs between the two objectives. At each iteration an internal population is created by selecting chromosomes from the external population. This selection phase takes into account the distribution of solutions across the two objectives by maintaining a hypergrid of equally sized cells in the objective space. The solutions are selected uniformly from among the populated niches such that highly populated niches do not contribute more solutions than less populated ones. After selection, the crossover and mutation operators are applied within the internal population. The external population is updated by joining the two populations and eliminating the dominated solutions. The general scheme of the algorithm is presented in Algorithm 4.10.

This multi-objective algorithm was previously used by Han in unsupervised clustering (when the number of clusters is not fixed and evolve during search) with very good results. The objectives they optimized were connectivity and the within-cluster deviation.
and because the number of clusters was allowed to vary, a different representation and consequently different operators were used.

The straightforward representation of a solution for the partitioning problem is a string, encoding the cluster membership of each data item. This is the representation used in our GA: an individual is a string of length \(n \) (the number of vertices in the graph), taking values in the set \(\{1, \ldots, k\} \), where \(k \) is the number of clusters.

If the standard operators would be used, this encoding would suffer from several drawbacks like redundancy and invalidity and would determine a slow convergence of the algorithm. However, due to the multi-objective scheme used and the new operators we propose, this drawbacks are eliminated.

In the initialization phase a minimum spanning tree (MST) is constructed using Prim’s algorithm. Half of the population is initialized with candidate solutions created by repeating the following procedure: \(k - 1 \) edges are randomly removed from MST and the connex components are marked as individual clusters. The rest of the population is filled with chromosomes generated randomly.

The crossover operator takes as input two partitions (individuals in the population) and computes their intersection. Since the new partition has more than \(k \) clusters, clusters are merged until the required number is reached. The decisions are made with regard to the two objectives to be optimized and therefore two distinct crossover operators are used. One operator aims at decreasing the cut size and therefore performs some iterations of the hierarchical agglomerative clustering algorithm using average link-
age metric. The second operator merges iteratively the two smallest clusters aiming at balancing the clusters, until a number of k clusters is reached.

The mutation operator takes as input a single partition and reallocates a randomly chosen vertex and its most similar adjacent vertices to a randomly chosen cluster. The number of adjacent vertices to be reallocated decreases during the run so that in final iterations only small perturbations are allowed. This strategy allows for a quick exploration/diversification phase of the search space in first iterations of the algorithm which degenerates into an exploitation/intensification phase in last iterations.

The fitness functions used in our multi-objective genetic approach are based on the two objectives presented in Section 4.4.2 and are formulated for minimization. We maximize the entropy by minimizing the Gini index criterion 4.4 and minimize the average cut size as expressed by Equation (4.5).

4.4.4 Experiments

Experiments were conducted on synthetic datasets containing well-defined clusters of various sizes. The synthetic generator designed by Handl and Knowles \(^3\) was used to create five datasets, each one consisting of 1500 data items grouped into 3 clusters. The clusters in a data set are built iteratively based on covariance matrices which need to be symmetric and positive definite. Overlapping clusters are rejected and regenerated, until a valid set of clusters is found. The datasets are named as $n_1 - n_2 - n_3$ with n_p denoting the size of cluster p.

The size of the internal population was set to 10. The maximum size for the external population containing non-dominated solutions was set to 500 but in our experiments it did not exceed 250 elements. The number of iterations was set to 10000.

Figure 4.11 presents the set of non-dominated solutions returned in the last iteration of the genetic algorithm. The fitness values corresponding to the two criteria to be optimized are normalized in range $[0, 1]$ and are plotted as follows: the horizontal axis corresponds to Criterion (4.4) expressing how unbalanced the clusters are and the vertical axis corresponds to Criterion (4.5) expressing the average cut size. The solution closest to the real partition of the dataset is marked as a square; in this regard, the Adjusted Rand Index is used to evaluate the quality of the partitions. The partition corresponding

\(^3\)http://dbkgroup.org/handl/generators/generators.pdf
Figure 4.11: The set of non-dominated solutions for various datasets. The horizontal axis corresponds to criterion 4.4 expressing how unbalanced the clusters are and the vertical axis corresponds to criterion 4.5 expressing the average cut size. The best match to the real partition is marked as a square. The partition corresponding to the minimum score computed as sum between the two objectives is shown as a triangle.

to the best/minimum score computed as sum between the two objectives is marked as a triangle.

The shape of the Pareto front plotted for datasets of various degrees of uniformity is an indicator of the interaction between the two objectives. Because both objectives are formulated for minimization, the desirable position of a clustering is towards the southwestern corner of the diagram. Experimental results show that the average cut size cannot be lowered indefinitely without severely affecting the balancing of the clusters.
A gap is recorded for the criterion measuring the uniformity once the optimum solution (with regard to the true partition) is met. This gap is due to the dependency between the two objectives: the second criterion measuring the average cut size is built using both the cut size and the entropy (the first objective).

The best solution with regard to the real partitioning of the dataset is very close to the solution retrieved as a convex combination between the two objectives. In all cases the Adjusted Rand Index takes values higher than 0.95, which indicates a very close match to the real partition. Experimental results show that a convex combination between the two criteria is able to identify a near-optimum solution if the final set of non-dominated solutions is normalized within the same range for both objectives.

To highlight the advantages of our multi-objective approach over other graph clustering methods, the well-known recursive partitioning algorithm METIS is used, which delivers only perfectly-balanced clusters, even though in practice this may not be the best solution from the point of view of the cut size.

Table 4.6 presents comparative results. The Adjusted Rand Index (ARI) is reported for the solutions corresponding to: 1) the partitioning with the highest ARI value, 2) the best partitioning under the convex combination (average) over the two criteria normalized in range $[0,1]$ and 3) the best balanced partitioning from the non-dominated set of solutions delivered by the genetic algorithm, which corresponds to clusters of equal size. Also, the ARI is reported for the partition computed with METIS.

<table>
<thead>
<tr>
<th>Instance</th>
<th>best under ARI</th>
<th>best convex combination</th>
<th>best balanced</th>
<th>METIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-500-500</td>
<td>0.9999</td>
<td>0.9880</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>500-600-400</td>
<td>0.9909</td>
<td>0.9909</td>
<td>0.8111</td>
<td>0.8118</td>
</tr>
<tr>
<td>500-700-300</td>
<td>0.9625</td>
<td>0.9535</td>
<td>0.6588</td>
<td>0.6817</td>
</tr>
<tr>
<td>500-800-200</td>
<td>0.9839</td>
<td>0.9839</td>
<td>0.5764</td>
<td>0.5954</td>
</tr>
<tr>
<td>500-900-100</td>
<td>0.9950</td>
<td>0.9950</td>
<td>0.5615</td>
<td>0.5493</td>
</tr>
</tbody>
</table>

Table 4.6: Comparative Results

Experimental results show that our algorithm is comparable with METIS with regard to the quality of the balanced partitioning. However, a near-optimal match with the true partitioning of the dataset can be extracted from the final the set of non-dominated

\[^4\text{http://glaros.dtc.umn.edu/gkhome/}\]
solutions in a unsupervised manner, using a convex combination of the two criteria we use. Furthermore, this set can be explored to extract the most convenient solution for the problem being solved.

Also Figure 4.11 shows that the non-linear criterion \(\Psi(X) \) given by Equality (4.5) biases the search towards highly balanced clusters and can be successfully used when a perfectly balanced partition is desired. Its convex combination with the criterion measuring the balancing degree of the partitioning is necessary to retrieve the true partitioning.

4.4.5 Concluding Remarks and Future Work

A multi-objective approach to the graph clustering problem was investigated. A novel criterion was proposed to measure cluster uniformity, based on the generalized entropy. A multi-objective genetic algorithm that returns a set of non-dominated solutions was used to study the interaction between the two criteria and to extract the optimum solution.

Future work will be conducted towards integrating a multi-level strategy within our approach in order to make it feasible for very large problems from VLSI design. The formal definition of clustering objectives allows for further hybridizations with pseudo-boolean programming procedures.
Chapter 5

Metric learning

The goal of clustering is to group objects based on the similarity/dissimilarity between them. Similar objects - objects that are placed close in the feature space - must reside in the same cluster; dissimilar objects - objects that are placed far in the feature space - should reside in different clusters. This informal definition speaks for the necessity of similarity/dissimilarity measures in cluster analysis.

This chapter illustrates the impact of particular distance metrics on the results of cluster analysis and the need for metric learning. Popular manifold learning techniques employed in cluster analysis are revisited. Unsupervised approaches for feature weighting and selection are surveyed.

5.1 Distance metrics in clustering

In accordance with the definition of clustering in section 3.2.1, let S be a data set consisting of n data items, each of which is described by m numerical attributes: $S = \{d_1, d_2, ..., d_n\}$ where $d_i = \{f_{i1}, f_{i2}, ..., f_{im}\} \in \mathcal{S}_1 \times \mathcal{S}_2 \times \cdots \times \mathcal{S}_m \subset \mathbb{R}^m \forall i = 1..n$. In order to measure the similarity between two objects from the set $S \subset \mathbb{R}^m$, a function $s : S \times S \to \mathbb{R}^+$ must be defined; high similarity requires high values returned by function s, which is equivalent with high values for close-placed objects and small values for far-placed objects. On contrast, under a general distance function, close/similar objects result in small distance values between them. In this regard, it is more natural to work with dissimilarity and not similarity functions when performing clustering. To measure the dissimilarity between two objects, a function $d : S \times S \to \mathbb{R}^+$ is defined with the following meaning: if $d(x, y) < d(x, z)$ then x is more dissimilar to z than it is to y;
alternatively, \(x \) is more similar to \(y \) than it is to \(z \). Additionally, the function \(d \) should have the following properties:

- \(d(x, y) = 0 \iff x = y \) (identity)

 If two objects are identical than the distance/dissimilarity between them is 0 and if the distance/dissimilarity between two objects is 0 then the objects are identical.

- \(d(x, y) = d(y, x), \forall x, y \in S \) (reflexivity)

 \(x \) is dissimilar to \(y \) as much as \(y \) is dissimilar to \(x \)

- \(d(x, y) + d(y, z) \geq d(x, z), \forall x, y, z \in S \) (triangle inequality)

 If the triangle inequality would not hold, we could have point \(y \) similar to points \(x \) and \(z \) (therefore a clustering algorithm should put the three points in the same cluster) while the points \(x \) and \(z \) are very dissimilar.

The identity, reflexivity and triangle inequality properties above express the requirement that the dissimilarity between objects in a clustering task should be measured with a metric.

Because clustering is mainly based on measuring the dissimilarity between objects, the metric employed for this task has a great impact on the result of a clustering algorithm influencing the shape, the volume and the orientation of clusters. Some frequently used metrics are mentioned below. The most known metrics can be derived from the general Minkowski form:

\[
d_p(x, y) = \left(\sum_{i=1}^{m} |x_i - y_i|^p \right)^{\frac{1}{p}} \quad (5.1)
\]

Value 1 for parameter \(p \) yields the Manhattan metric, which sums up the dissimilarities reported in every dimension:

\[
d_1(x, y) = \sum_{i=1}^{m} |x_i - y_i| \quad (5.2)
\]

Value 2 for parameter \(p \) yields the widely used Euclidean metric:

\[
d_2 = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}
\]
The Chebychev metric computes the distance between two points in the dimension that discriminates between them the most:

\[d_\infty(x, y) = \max_{i=1..m} |x_i - y_i| \]

(5.3)

In a learning context, when measuring dissimilarities between two entities, the use of the Manhattan norm and moreover of fractional norms, reduces the impact of extreme individual attribute differences when compared to the equivalent Euclidean measurements. Conversely, the higher-order norms emphasize the larger attribute dissimilarities between the two entities.

The Minkowski metrics are based on summing up or comparing the feature differences; in this regard, the feature numeric differences are equally important in taking decisions. This assumption might be correct as far as it gives the features equal importance when discriminating between classes, but the numeric differences are dependent on the scales used; consider for example the case of two attributes, one expressing the temperature in Celsius degrees and the other expressing the geographical coordinates in meters. Due to different scales, one feature may dominate the others in distance calculations. In order to eradicate such problems, normalization/scaling is performed in a preprocessing step. Feature scaling maps the values of a feature variable \(f \in (a, b) \) to the values of other variable \(f_s \in (A, B) \):

\[f_s = \frac{f - a}{b - a} \cdot (B - A) + A \]

However, feature scaling is not always beneficial in clustering. It can be inappropriate if the spread of values is due to the presence of subclasses. Figure 5.1 shows two well-separated clusters which are merged into a single one as a consequence of features scaling.

![Figure 5.1: Negative effect of scaling on two well-separated clusters.](image)
Experience has shown that a rather good strategy is to normalize every feature dimension f in such a way that the variance of every feature variable becomes the same. The formula below (known in statistic as the z-score) maps a feature f having mean μ and variance σ to an attribute f_{sn} having mean 0 and variance 1:

$$f_{sn} = \frac{f - \mu}{\sigma}$$

The z-score standardization is the most used method when preparing data for clustering analysis. Other standardization methods are presented in Gan et al. (2007).

Clusters defined by the Euclidean metric will be invariant to translations or rotations in feature space; this is not the case for all Minkowski metrics. They will not be invariant to linear transformations in general, or to other transformations that distort the distance relationship.

Because of the unsupervised character of clustering, the statistical-based metrics are widely used; they detect the correlations between features and diminish the redundancy. The Mahalanobis distance embraces the form of the generalized Euclidean distance making use of the covariance matrix computed over the feature variables:

$$d_M = \sqrt{(x - y)^T \Sigma^{-1} (x - y)}$$

It is used to remove several limitations of the Minkowski metrics: it simultaneously performs feature scaling and corrects the correlation between features. Moreover, clusters with elongated form (as illustrated in Fig. 1) are easily detected. From these perspectives the Mahalanobis distance seems to be the ideal solution for clustering algorithms; nonetheless, one important drawback exists: the computation time grows quadratically with the number of features due to the difficult calculation of the covariance matrix. However, to get a Mahalanobis metric is equivalent to linearly transform the input data and take the Euclidean metric in the transformed space.

Figure 5.2 shows the results obtained by the k-Means algorithm using the Manhattan, Euclidean and Mahalanobis metrics. Although these metrics have common roots and are mainly based on computing the differences in each of the space coordinates, the results may be quite different when used within a clustering algorithm. Note that in the present case-study, the Manhattan and Mahalanobis metric discover the true clusters
Figure 5.2: Clusters obtained with k-Means using the Manhattan and Mahalanobis metrics (left) and the Euclidean metric(right).

Figure 5.3: Distance metrics: Manhattan, Euclidean and Chebyshev at left, Mahalanobis at right.

in data; the Euclidean metric, which emphasizes each feature difference by squaring it, causes the true clusters to get split.

Generally, the metric used to measure the dissimilarity among data items dictates the shape of the clusters identified in data. Figure 5.3 shows the perimeter drawn by all points at distance 1 under different metrics. The intuition behind these contours is that the Euclidean distance determines spherical clusters, the Mahalanobis distance discovers ellipsoidal clusters while Manhattan and Chebyshev extract rectangular clusters. This intuition is in agreement with the results in 5.2.

There are several metrics which perform intrinsic normalization. One example is Canberra distance which normalizes each feature difference. It accounts not only for the feature differences but also for feature relations to the origins of the feature space; therefore, this distance has a bias for distances measured around the origin: the closer the origin, the smallest the distance value.

\[d_C(x, y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i| + |y_i|} \]
Statistical correlation indexes can serve as basis for other distance metrics. The Pearson correlation index or the Spearman rank correlation can be used as similarity metrics if the absolute values are considered.

There are distance functions that compute the dissimilarity between two data items from a trigonometrical perspective. The data items are considered vectors within an \(m \)-dimensional space; two vectors are similar if they point in the same direction, regardless their length. In this category, the Cosine function computes the similarity between two vectors as the cosine of their angle:

\[
\begin{align*}
 s_{CS}(x, y) &= \frac{\sum_{i=1}^{m} (x_i \cdot y_i)}{\sqrt{\sum_{i=1}^{m} x_i^2 \cdot \sum_{i=1}^{m} y_i^2}} \\
 d_{CS}(x, y) &= \arccos(s_{CS}(x, y))
\end{align*}
\]

As already mentioned, Cosine measures the similarity: high values correspond to similar data items. In order to transform it into a distance metric, the inverse should be used:

Choosing the appropriate metric is very difficult; a correct decision necessitates prior knowledge on the data. Anyway, some general guidelines can be formulated with regard to the domain the data come from. The Euclidean distance is appropriate when the spatial/geographical relationships among objects are important in differentiating between them. Due to its common use in real life (which makes it more intuitive), it is the first choice in clustering. Thus, the scientific literature on clustering employs the Euclidean metric in applications derived from a wide range of domains.

The Manhattan distance was found to perform well in clustering with obstacles by Prak et al. (2007). One important advantage over the Euclidean metric is the reduced computational time.

Aggarwal et al. (2001) show that in high-dimensional spaces, lower-order metrics (like Manhattan) and fractional norms are more appropriate to discriminate between data items. As a consequence, clustering algorithms using fractional norms to measure the distance between data items of large dimensionality, are more successful.
The cosine function and correlation coefficients were experimentally proven to perform better than Euclidean distance in documents clustering by Ghosh and Strehl. The cosine function is also an appropriate choice to cluster binary objects.

Statistical correlation indexes, such as the Pearson correlation coefficient and standard deviation (SD) - weighted correlation coefficient, are the two most widely used similarity metrics in clustering microarray data. Beside these, novel correlation coefficients were proposed by Yao et al. (2008).

New metrics can be formulated based on defining what differences are interesting and how important a particular set of differences is. Unfortunately, these kinds of assumptions necessitate prior domain-specific knowledge on the data. When such information is available, metric learning can be performed. The next section discusses metric learning, highlighting the main difficulties which appear in an unsupervised framework in contrast to the supervised scenario.

5.2 Metric learning contexts

Metric learning is the problem of defining a distance metric for a set of input data items which reflects/preserves the similarity relations among the training data pairs. Because many machine learning algorithms rely on computing distances in the input space, metric learning has been intensively studied in the context of specific machine learning tasks but also as a stand-alone problem. A good distance metric is crucial for the performance of some classification and clustering algorithms or even retrieval tasks such as content-based image retrieval.

Depending on the learning conditions, metric learning algorithms can be divided into several classes. The most important factor which dictates the learning scenario/mechanism is the type and quantity of prior information available for the data. This criterion also distinguishes among different machine learning applications within which metric learning can be involved; in this sense, metric learning also gains different goals:

- Supervised metric learning is applicable for the case of data items which are grouped into similarity classes. The typical application is the supervised classification which is based on a set of labeled data items; based on the class information, a distance metric can be learned which brings closer data in the same class while increases
the distances between data having different labels. Such a metric would increase considerably the performance of k-NearestNeighbors classifiers.

- Semi-supervised metric learning is based on less information in the form of pairs of data items that are similar or dissimilar; it is involved in semi-supervised clustering, where data items must be grouped satisfying some pair-wise constraints. As a stand-alone approach semi-supervised metric learning can be treated as in the supervised scenario; as a wrapper approach it is involved in a constrained clustering procedure.

- Unsupervised metric learning is performed using only intrinsic information from data; no information regarding similarities/dissimilarities between data items is available. Because the process is completely unsupervised, the main goal is to reduce the dimensionality of data while preserving the distance relations under an already defined metric. In contrast with supervised metric learning which learns a new distance function, in the unsupervised scenario new features are extracted into a lower-dimensional space from the initial high-dimensional feature space; the learning aims the feature space while the metric function embrace the same pre-defined form. Most unsupervised metric learning algorithms are based on statistics and aim at eliminating redundant attributes/features or noise.

Regarding the flow of the data analysis, metric learning can be performed as:

- a stand-alone procedure in a pre-processing step in order to prepare the data for further analysis; many dimensionality reduction algorithms fall into this category;

- a wrapper method within a machine learning algorithm; i.e. metric learning and clustering can be performed simultaneously or the metric is only evaluated using a specific classification/clustering algorithm; in both cases the results are highly dependent on the machine learning algorithm used.

Metric learning can be performed to reflect the relations between data items:

- globally - one distance metric is learned for the whole data set;

- locally - one distance metric is evolved for each class; this approach is efficient in identifying clusters with different volumes and shapes in the unsupervised scenario.
5.3 Feature selection/extraction

Feature Selection (FS) generally aims at reducing the representation of data items with minimum alterations of their significance or descriptive accuracy, in order to reduce the computational cost of further analysis. It is the simplest approach to dimensionality reduction: redundant or irrelevant original features are identified and excluded. Redundancy is detected using correlation indexes and can be performed independent of any other form of analysis, in a filter manner. However, irrelevancy is relative to the investigated task: in supervised classification irrelevant features are those which do not contribute to discriminating between classes, while in clustering irrelevancy may be formulated as the absence of any grouping tendency; irrelevant features can be detected both in a filter and in a wrapper manner.

A more complex approach to dimensionality reduction is Feature Extraction (FE): new features are extracted as linear or nonlinear functions of the original set of features. These approaches are more powerful, as they can capture complex relationships between variables. The main focus of most of these methods is not on retrieving or maintaining cluster structure, but to provide a lower-dimensional manifold of the original data set. Such methods are presented in section 5.6.

Feature weighting is a special case of FE: new features are obtained by multiplying the original features with scalars (the original features are scaled).

5.4 Supervised and semi-supervised metric learning

Metric learning is a problem intensively studied in the supervised framework, mostly because of its influence in classification tasks. A training dataset is available in this context, that is used further to derive similarity constraints in the form of an equivalence class $Sim = \{(d_i, d_j) | d_i$ and d_j are in the same class $\}$ and dissimilarity constraints of the form $Diss = \{(d_i, d_j) | d_i$ and d_j are in distinct classes $\}$. The general problem of learning a global metric in the supervised or semi-supervised scenario can be formulated as a convex optimization problem by parameterizing existing metrics such as the Euclidean or Cosine function:
\[d_{2_A} = \sqrt{(x - y)^T A(x - y)} \]

\[s_{CSA}(x, y) = \frac{x^T A y}{\sqrt{x^T A x} \sqrt{y^T A y}} \]

The metric learning problem reduces to identifying a positive semi-definite matrix \(A \) such that the distances between pairs in \(S \) are minimized subject to preserving a threshold on the distances between pairs in \(D \) (see Xing et al. (2003)). Yang and Jin present a probabilistic framework for global distance metric learning which allows for the incorporation of unlabeled data.

There also exist several methods for learning local distance metrics in the supervised framework: [Bermejo and Cabestany (2001); Domeniconi and Gunopulos (2002); Hastie and Tibshirani (1996)].

Feature selection is a task intensively investigated in the supervised scenario [Guyon and Elisseeff (2003)]. Filter methods use classifier-independent measures that consider how well the known classes are reflected by the distribution of feature values. Wrapper methods measure the fitness of a feature subset relative to the performance of a particular classifier.

A more comprehensive survey on supervised metric learning can be consulted in [Yang and Jin].

5.5 Unsupervised metric learning

Metric learning is performed in the unsupervised framework with slightly different meanings and goals than in the supervised scenario. The literature usually includes in this category unsupervised dimensionality reduction methods which perform unsupervised feature extraction or feature weighting.

Dimensionality reduction generally aims to reduce the size of the representation of the data items in order to lower the computational cost for further analysis.
Filter methods for unsupervised distance metric learning are known as manifold learning. The main idea is to learn an underlying low-dimensional manifold where geometric relationships (e.g., prior computed distances, topological relations) between most of the observed data points are preserved. Popular algorithms in this category include Principal Component Analysis, Multidimensional Scaling, ISOMAP. These methods act as a pre-processing step, prior to and independent of any other subsequent supervised or unsupervised method of analysis. The most popular methods from this category are revisited in section 5.6 dedicated to Manifold learning. Most of these methods, employed as pre-processing steps, do not influence the outcome of further cluster analysis because, generally, manifold learning aims at preserving the original similarity relations among data items. However, dimensionality reduction techniques make possible data visualization that offers clues on the grouping tendency in data.

Only a few methods were designed to perform metric learning in the context of clustering. Like in manifold learning, they compute a low-dimensional representation of the data items; however, the aim is not to preserve as faithful as possible the original similarity relations among data items, but to obtain a manifold which maximizes the grouping/clustering tendency in data. This class of methods consists mainly of FS approaches or its generalization - feature weighting. Existing work in this area is summarized in section 5.7 dedicated to metric learning for clustering.

5.6 Manifold learning

This section presents unsupervised filter approaches to feature extraction. This class of methods comprises well-known dimensionality reduction algorithms that extract new features as linear combinations of the existing ones (i.e. Principal Component Analysis) or as nonlinear combinations (i.e. Multidimensional Scaling, Nonlinear/Independent Component Analysis, Isomap, Self-organizing Maps).

5.6.1 Linear methods

Factor Analysis stipulates that behind the observed features underly some hidden variables: variations in several observed variables may reflect the variations in a single unobserved variable, or in a reduced number of unobserved variables. A strong correlation among a subset of features can be the result of the influence of some unobserved
variables. The observed features are called dependent variables and are influenced by the hidden variables which are independent and are called factors. Therefore, linear algebra methods are employed to identify groups of inter-correlated features and construct independent variables. The result is a lower-dimensional representation which accounts for the correlations among features.

Principal Components Analysis (PCA) [Pearson (1901)] is the most used form of factor analysis. It is widely used to perform dimensionality reduction and eliminate redundancy in data. It identifies the factors that best preserve the variance in data. The factors are computed as projections on the eigenvectors of the covariance matrix which are used as new axes in the feature space. It can be shown that these factors (called components) are uncorrelated and maximize the variance retained from the original feature set. The number of components is equal to the number of features, but only those which correspond to the highest eigenvalues are retained, as they explain much of the initial variability in data.

To synthesize, PCA rotates the original feature space and projects the feature vectors onto a limited amount of axes. Figure 5.4 illustrates this process for a data set containing only two features. As can be seen from the covariance matrix computed for the modified feature space, the total variance in data is preserved and the new features (components) are uncorrelated.

In [Ding and He (2004)] the authors show experimentally and provide theoretical results that indicate that performing dimensionality reduction via PCA improves consistently the performance of the k-Means algorithm.
5.6.2 Nonlinear methods

This section revisits widely used techniques for data visualization, techniques which create a nonlinear embedding of a data set within a lower dimensional space.

Multi-dimensional scaling (MDS) comprises a set of non-linear techniques which aim at mapping the data items in the original data set to some points in a low-dimension space such that the distances between representative points match some given dissimilarities between the data items in the original space. MDS is not an exact procedure but a way to “rearrange” objects in an efficient manner, so as to arrive at a configuration that best approximates the observed distances. Two approaches can be differentiated based on the degree of rigor:

- **metric MDS** aims at creating a mapping for which the distances are proportional to the given dissimilarities; e.g. the objective of this approach can be formulated to minimize \(\sum_{1 \leq i < j \leq n} (d_{ij} - \delta_{ij})^2 \), where \(d \) stands for the observed distance and \(\delta \) for the distance computed in the low dimensional space;

- **nonmetric MDS** aims at creating a mapping assuming that the dissimilarities are merely ordinal and the rank order of the distances has to be as close as possible to the rank order of the dissimilarities; the objective can be generally formulated as \(\sum_{1 \leq i < j \leq n} (d_{ij} - f(\delta_{ij}))^2 \).

A well-known approach to metric MDS, known as **Sammon’s mapping**, makes use of a steepest descent procedure to minimize the objective function \(\frac{1}{\sum_{1 \leq i < j \leq n} d_{ij}} \sum_{1 \leq i < j \leq n} (d_{ij} - \delta_{ij})^2 \). However, the procedure is practical only for small data sets (low values of \(n \)). De Backer et al. (1998) proposes a more efficient algorithm which performs non-metric MDS using Kruskal’s monotone regression procedure.

Generally, dimensionality reduction by metric MDS techniques does not influence the result of an automated clustering algorithm since the distances between data points are preserved; however, data visualization can offer valuable information for further clustering analysis (e.g. the number of clusters, the density/shape of the clusters).

A popular extension of MDS to deal with nonlinear structures in data is **Isometric feature Mapping** (ISOMAP), proposed by Tenenbaum et al. (2000). This approach builds on classical MDS but seeks to preserve the intrinsic geometry of the data, as captured in the geodesic manifold distances between all pairs of data points. The algorithm consists of three steps: a neighborhood graph is constructed, the geodesic
distances are computed based on retrieving shortest paths between any two nodes and, finally, a metric MDS approach is applied. ISOMAP is usually applied wherever nonlinear geometry complicates the use of PCA or MDS.

Self Organizing Maps (SOM) proposed by [Kohonen (1997)](http://www.cis.hut.fi/research/som-bibl/) are a special type of artificial neural network designed to map the items in a data set onto a (usually) two-dimensional lattice so that neighboring areas in the map represent neighboring areas in the input space. Unlike MDS, the mapping is not performed in a continuous space; therefore, instead of trying to reproduce distances they aim at reproducing topology. Since their introduction in 1995, the literature records more than 7700 papers presenting applications of SOM for clustering, feature extraction, data visualization in diverse domains.

The SOM architecture consists of two layers completely connected. Each neuron in the input layer corresponds to an attribute/feature in the data set, the total number of neurons being equal to the dimensionality m of the feature space. The output layer consists of neurons organized on a regular grid, each neuron being represented by an m-dimensional weight vector. The neurons in the output layer are connected to adjacent neurons by a neighborhood relation and are also connected to all neurons in the input layer.

The training algorithm initializes randomly the weights in the output layer. An iterative learning procedure is then designed, each iteration consisting of three processes: competition, cooperation and adaptation. In the competitive phase a data item is presented as input and a winning neuron is determined from the output layer as the one which minimizes the Euclidean distance between the corresponding weight and the input data. In the cooperative phase several neighboring neurons are selected from the output layer with the aid of a neighborhood function. In the adaptive phase the weights of the winning neuron and of its neighbors are adjusted to match the input data; a learning rate which decreases along the run as the algorithm converges, and the neighborhood function used to differentiate among the selected neurons are used at this step.

The algorithm presented above performs a *sequential* training. There exists a *batch* version of the training algorithm which performs the adaptive phase after the entire data set is presented to the network.

SOMs can be thought of as a spatially constrained form of k-means clustering: every output neuron corresponds to a cluster, and the number of clusters is defined by the size of the grid, which typically is arranged in a rectangular or hexagonal fashion.

Dimensionality reduction can also be addressed as a clustering problem: the m features become objects in a n-dimensional space. The correlation matrix is computed and a hierarchical algorithm is applied to detect groups of highly correlated features. The simplest way to merge two groups of features is just to average them (requires that the features have been scaled so that their numerical ranges are comparable). For categorial data, the Barthelemy-Montjardet metric is used to measure the distance between any two attributes by computing the distance between the partitions they generate [Butterworth et al. (2005)].

5.7 Metric learning in clustering

This section is dedicated to metric learning techniques that aim at extracting an embedding of the data set which maximizes the grouping tendency in data. Most techniques in this category are designed to perform feature weighting and feature selection in a wrapper manner.

Feature selection in the unsupervised context of clustering aims at identifying the features that generate good partitions. Feature weighting and feature ranking are generalizations of feature selection. Feature weighting aims at numerically quantifying the contribution of each feature towards the best possible clustering result. Feature ranking is a relaxation of feature weighting aiming at establishing a hierarchy of features that can serve further to feature selection.

In view of the definition of clustering stated in section [3.2.1], feature weighting can be stated as an optimization problem:

$$ w^* = \arg\max_w Q(S') $$

where

* $w = \{w_1, w_2, \ldots w_m\} \in [0, 1]^m$ is a vector of weights with: $\sum_{i=1}^{m} w_i = 1$;
• S' is the data set constructed based on the original set S and the weights vector w as follows: $S' = \{d'_1, d'_2, ..., d'_m\}$, $d'_i = \{w_1 \cdot f_{i1}, w_2 \cdot f_{i2}, ..., w_m \cdot f_{im}\}, \forall i = 1...n$;

• $Q(S')$ is a function which measures the tendency of the data items in set S' to group into well-separated clusters; it can be expressed by means of the entropy (filter approaches) or of a fitness function which measures the quality of a partition detected by a clustering algorithm (wrapper approaches); in the latter case feature weighting reduces to solving the clustering problem in different feature spaces.

The general definition of feature weighting does not modify the feature space but introduces the weights within the distance which uses it further to discriminate between features. Since in our study we use the Euclidean distance, the two definitions are equivalent.

Feature selection can be formulated in this context restricting the weights to binary values: $w \in \{0, 1\}^m$, value 1 meaning that the feature is retained and value 0 that it is eliminated. Furthermore, a solution to the general feature weighting problem can be straightforward transformed into a solution to the corresponding feature selection problem: either the k features with the highest weights are selected or a threshold is defined and the features corresponding to weights below it are discarded.

Feature ranking is obtained by sorting the features according to their weights.

Unsupervised feature selection is currently performed in clustering by means of:

• filter approaches, that compute some entropy measure in order to assess the grouping tendency of the data items in different feature subspaces. The subsequent unsupervised learning method is completely ignored.

• wrapper approaches which actually search for partitions in different feature subspaces using a clustering algorithm. These approaches give better results but at higher computational costs.

Feature selection literature includes a higher number of papers than feature weighting; both problems have been addressed only relatively recently in the unsupervised framework.

Since the search space is exponential in the number of features, unsupervised feature selection has been initially approached with greedy heuristic methods, in the filter manner. Such an approach is sequential selection which was implemented in two variants [Liu and Motoda (1998)]: sequential forward selection starts with the empty set
and, iteratively, adds the most rewarding feature among the unselected ones; similarly, sequential backward selection begins with the whole set of features being selected and, iteratively, the least rewarding feature among the selected ones is removed until the stopping criterion is met. Two strategies are used to compute the merit of each feature: one that aims at removing redundant features and one that scores the relevance of features. Redundancy-based approaches hold that mutually-dependent features should be discarded. On the contrary, there exist approaches in the second category \cite{Talavera, Sndberg-madsen} that compute relevance accepting that relevant features are highly dependent on the clusters structure and therefore, they are pairwise dependent; pairwise dependence scores are computed using mutual information and mutual prediction \cite{Sndberg-madsen}. Other approaches rank the features according to their variances or according to their contribution to the entropy calculated on a leave-one-out basis \cite{Varshavsky, Simovici}. Entropy serves as basis for the definition of impurity and conditional impurity that are used to identify sets of attributes that have good clustering properties in the case of categorial data \cite{Simovici}.

Unlike most of the filter approaches, wrapper methods evaluate feature subsets and not simple features. These approaches perform better since the evaluation is based on the results of the respective exploratory analysis method. However, wrapper approaches have two drawbacks: high computational time, and bias. In an unsupervised framework, the objective function which guides the search for good partitions induces some biases on the size of the feature subspace and the number of clusters. As explained in section 1, there is no generally accepted objective function for unsupervised clustering and all the functions proposed in the literature influence to more or less the number of clusters. Furthermore, all the objective functions are based on computing some distance function for every pair of data items; the dimensionality influences the distribution of the distances between data items and thus induces a bias on the size of the feature space. To illustrate this, consider the case of Minkowski distance functions: the mean of the distribution increases with the size of the feature space because one more feature introduces one more positive term into the sum; combined with an objective function which minimizes the intra-cluster variance, feature selection will be strongly biased towards low dimensionality.

In order to reduce the bias, a few strategies were proposed. \cite{Dy-Brodley} use sequential forward search to search for feature subsets in conjunction with the Expectation Maximization algorithm to search for the best partition. The search for the number of clusters is performed for each feature subspace starting with a high number of clusters and iteratively decrementing by one this number, merging at each step
the clusters which produce the minimum difference in the objective function. Two feature subset selection criteria are tested: the Maximum Likelihood criterion which is biased towards lower-dimension spaces and the scatter separability which favors higher-dimensional spaces. In order to counteract these biases when comparing two feature subsets, cross-projection is introduced: the best partition is determined for each feature subspace and the resulting partitions are evaluated in the other subspace; the fitness of each feature subspace is computed with regard to the quality of the optimal partition it produces, measured in both feature subspaces.

Multi-objective optimization algorithms are a more straightforward way to deal with biases: the bias introduced in the primary objective function is counterbalanced by a second objective function. The approach was initially proposed in Kim et al. (2002) where a number of four objectives are used within the Evolutionary Local Selection Algorithm (ELSA). In Morita et al. (2003) only two objectives are used by a multi-objective genetic algorithm: the Non-dominated Sorting GA-II. A more extensive study on the use of multi-objective optimization for unsupervised feature selection is carried out in Handl and Knowles (2006a): some drawbacks of the existing methods are outlined and several objective functions are thoroughly tested on a complex synthetic benchmark. Furthermore, a strategy for automated solution extraction from the Pareto front is proposed. The clustering algorithm is K-Means.

Feature weighting approaches eliminate the feature cardinality bias by enforcing the weights in the interval [0,1] to sum up to 1.

In Modha and Spangler the weight vector is optimized according to the generalized Fisher discriminant criterion; the search for the best partition is performed with k-Means along different numbers of clusters. Exhaustive search is performed for the optimal weight vector, over a finite search space defined using a fine grid on the interval [0, 1]; furthermore, in the initialization phase infeasible configurations are detected and eliminated. The method does not define any mechanism to generate new weight vectors: if the optimal solution is not included in the initial set which defines the search space, it will never be found.

In Chen et al. (2006) a double coding scheme in a genetic algorithm is applied to the fuzzy feature-weighting clustering problem. Each individual consists of two segments of codes for cluster centers and feature weights and are evolved simultaneously in the clustering process.
The current trend in unsupervised feature weighting is to assign a local weight vector to each cluster [Ganarski et al. (2008)].

Ensemble unsupervised feature ranking is presented in [Hong et al. (2008)]. Clustering is performed on random subsets of features and each feature in each subset is ranked through analyzing the correlations between the features and the clustering solution. Based on the ensemble of feature rankings, one consensus ranking is constructed.
Chapter 6

Wrapped feature selection by multi-modal search

Existing feature selection approaches are based on greedy optimizers or on global search methods that search for a single solution - the best feature subset. This section approaches feature selection as a multi-modal optimization problem: different feature subspaces may lead to different meaningful partitions of the original data. Once promising feature subspaces are detected, these can be used in several ways to render improved partitioning:

- the straightforward way is to return the best among all local optima detected; in the worst case the approach should perform as well as the global optimizers (because of improved exploration capabilities);

- all feature subsets can be used to construct one single feature subspace which could lead further to an improved partitioning;

- good partitions obtained in different feature subspaces may serve as items in ensemble clustering; this should be an interesting approach since both constraints required for good clustering ensembles [Domeniconi and Al-Razgan (2009)] are fulfilled: high quality and diversity.

This section investigates the feasibility of these scenarios. Part of the results presented here were published in [Breaban (2010a,b); Breaban and Luchian (2009)].
6.1 Feature search: the Multi Niche Crowding GA

In order to obtain high quality and diverse feature subsets we need an algorithm that: maintains stable subpopulations within different niches, maintains diversity throughout the search and converges to multiple local optima. Among several candidate GAs that work with subpopulations or implement the crowding mechanism, we chose the Multi Niche Crowding GA \cite{Vemuri1995}. Besides the required properties mentioned above, the algorithm presents the following advantages:

- it is a steady state algorithm that implements replacement based on pairwise comparisons; this strategy allows for testing the cross-projection strategy proposed by Dy and Brodley \cite{Dy2004} in order to counterbalance the feature cardinality bias; this strategy will be denoted throughout the section as the cross-projection normalization;

- the few parameters involved can be very easily fine-tuned. Furthermore, there exist in-depth mathematical results \cite{Vemuri1995} that show the dynamic of the population and offer guidelines about the parameter values to be used in order to achieve the desired niching pressure during a run.

6.1.1 The algorithm

In MNC GA, both selection and replacement operators implement a crowding mechanism. Mating and replacement among members of the same niche are encouraged while allowing at the same time some competition among the niches for the population slots.

Selection for recombination has two steps:

- one individual is selected randomly from the population

- its mate is the most similar individual from a group of size s which consists of randomly chosen individuals from the population; one offspring is created.

The individual to be replaced by the offspring is chosen according to a replacement policy called worst among most similar:

- f groups are created by randomly picking from the population g (crowding group size) individuals for each group;

- one individual from each group that is most similar to the offspring is identified;
- the individual with the lowest fitness value among most similar ones is replaced by the offspring.

Since in different feature subspaces different groupings can be identified, the algorithm searches for relevant feature subsets in conjunction with the number of clusters they produce. Therefore, a chromosome is a binary string encoding both the features (1-selected, 0-unselected) and the number of clusters (4 bits under Gray coding); this representation was used in several papers: [Handl and Knowles (2006a); Kim et al. (2002); Morita et al.] (2003).

Figure 6.1: One iteration in MNC GA for unsupervised feature selection.

One iteration of the MNC algorithm is illustrated in Figure 6.1.

The similarity between two individuals is measured using the Hamming distance; only the substring which encodes features is considered.

Recombination is performed with uniform crossover and binary mutation (rate 1/numberOfFeatures for genes encoding features and 1/4 for genes encoding the number of clusters).

In the original MNC-GA algorithm the replacement is always performed, even if the fitness of the offspring is lower than the fitness of the individual chosen to be replaced. In our implementation we adopt a Simulated Annealing strategy: lower fitness survival is accepted with a probability that decreases during the run of the algorithm.
6.1.2 Parameters

For comparison purposes, many parameter values in our experiments are those reported in Handl and Knowles (2006a). The maximum number of clusters allowed during the search is $k_{\text{max}} = 17$. The search space is restricted to solutions with maximum $d_{\text{max}} = \min\{20, d\}$ features from a total of d features. The most time-consuming part of the algorithm is the evaluation step which mainly consists of determining the best partition for a given feature set. The number of evaluations is set to be equal to half of the number of evaluations taken by a greedy forward selection algorithm with a variable number of clusters; this is equivalent in our steady-state algorithm to $d_{\text{max}} k_{\text{max}} d$ iterations for a run.

For a reasonably good exploration of the search space the population size is set equal with the number of features of the data set under investigation.

The following values give an appropriate balance between exploration/exploitation and a moderate fitness pressure at replacement: $s = 0.10 \cdot \text{pop.size}$, $g = 0.15 \cdot \text{pop.size}$, $f = 0.10 \cdot \text{pop.size}$.

Lower fitness survivals are allowed at the beginning of the run with probability 0.5 which decreases exponentially during the run by multiplying it with 0.9995 at each iteration.

6.1.3 Solution evaluation

For each individual in the population of the MNC algorithm, the k-Means algorithm is run on the feature subset and with the number of clusters k encoded by the individual. The algorithm starts with k randomly generated centroids and successively assigns the data items to the nearest centroid and recomputes the centroids as means of the assigned data items. After the assignment step, centroids with no assigned objects are randomly re-initialized. The algorithm stops when no re-assignment takes place. The algorithm performs a local search and, consequently, the result is highly dependent on the initialization step. Therefore, 5 runs with different initial configurations are performed for each individual and only the best run under sum-of-squared error is kept.

The fitness of each individual in the population of the MNC algorithm is given by the quality of the k-Means partition produced as explained above. Therefore, a fitness function able to evaluate partitions with different numbers of clusters is required. We
used several fitness functions presented in literature as highly unbiased with respect to the number of clusters: the Davies-Bouldin Index (equation 3.8) and the Silhouette Width Index (equation 3.9). Also the criterion CritC introduced in chapter 7 (equation 7.3) is used.

6.2 Feature weighting

The solution is built from the entire population at the end of the run: each feature is assigned a weight based on its presence in the feature subsets encoded by the individuals. For each feature, the weight is computed as the ratio between the number of chromosomes which select it and the population size. The motivation of this approach comes from the properties of the MNC algorithm: at the end of the run, the chromosomes should be distributed in distinct niches containing relevant features; the size of the niches should reflect the relative importance of the features.

6.2.1 Solutions to the feature cardinality bias

In the Euclidean space, the fitness functions above are biased towards low-dimensioned spaces. In order to tackle this bias, in a first scenario, the cross-projection normalization is tested. It proved to work in the greedy context with Maximum Likelihood and scatter separability criteria but we found no study to report its use in global optimization methods in conjunction with other clustering criteria; one of the goals of the present work is to test if this normalization is still efficient in a more general context.

In a second scenario we test the ability of a multi-modal approach to deliver an ensemble of good feature subsets which lead further to the optimal feature weighting/ranking. No normalization is used to remove completely the dimensionality bias, but some bounds on the number of features are enforced. The method counts on the capacity of the algorithm to produce diverse but simultaneously good solutions such that the distribution of the genes in the population is in accordance with their relevance.

The cross-projection normalization

As Handl and Knowles outline in Handl and Knowles (2006a), the cross-projection normalization can be used for pairwise comparisons between features sets; however, it is
not transitive, which makes its use in global optimization techniques problematic. The steady state strategy alleviates this problem. The offspring is evaluated against each of the f candidates to replacement, using the cross-projection strategy. For each pair of chromosomes $(\text{offspring}, \text{candidate}_i)_{i=1}^f$, one pair of numerical values is obtained by evaluating the optimal clustering $C_{\text{offspring}}$ (obtained in the space defined by the offspring) and the optimal clustering C_i (obtained in the space defined by candidate i) in both subspaces:

$$
(F_{\text{fitness}}^{\text{offspring}}_i, F_{\text{fitness}}^{\text{offspring}})_{i=1}^f
$$

where $F_{\text{fitness}}^{\text{offspring}}_i = (1 - DB) \cdot F(C_k, k) + DB \cdot F(C_k, l)$ is the quality of the partition C_k identified in feature space k and evaluated in feature space k and feature space l by means of the clustering evaluation criterion F (see section 3.4). Parameter DB is introduced in order to study the influence of the cross-projection normalization: a value ranging from 0.5 to 0 reduces the normalization to the case when each individual is evaluated independently.

In Dy and Brodley (2004) the pair of fitness values is used to decide which of the two feature spaces is better. We use f pairs of values to decide which candidate to replacement is the worst. The comparison is done indirectly: for each pair $(\text{offspring}, \text{candidate}_i)_{i=1}^f$ the fitness gain is computed as the difference $(F_{\text{fitness}}^{\text{offspring}}_i - F_{\text{fitness}}^{\text{offspring}})_{i=1}^f$. The candidate with the highest fitness gain will be replaced.

Bounds on the number of features

Clustering criteria which are based on a distance between data items are biased with respect to dimensionality. In the absence of a function that completely eliminates the cardinality bias, our algorithm would converge to feature subspaces with very small or very high numbers of features. Therefore, we impose some bounds and enforce the individuals to stay within certain limits regarding the feature space dimensionality. Even if, in the extreme case, all the individuals converge in the end towards the same dimensionality, namely the lowest or the highest allowed, a multi-modal approach is still able to weight the features according to their relevance. This can be motivated analyzing the two worst-case situations:
in case all individuals in the population converge to the lowest-dimensional feature spaces due to the biases introduced by the fitness function, the final population within MNC GA should contain multiple niches formed only around relevant features. In this case it is necessary to consider all solutions in order to retrieve as many as possible of the relevant features. Furthermore, the size of the niche should be proportional to the fitness of the individuals and the weighting mechanism should offer a good approximation of the relevance of each feature;

- the property of the MNC GA algorithm to converge towards multiple good solutions works in the second case as well: good solutions require the presence of relevant features, while diversity may be obtained through the presence of some irrelevant features. Thus, in case all individuals converge to a feature space of dimensionality higher than the number of relevant features due to the biases introduced by the fitness function, the chromosomes should contain beside (all) the relevant features some noisy features; these noisy features should be spread around multiple niches in the final population of MNC GA; then, the counting mechanism used should lead to lower weights for the noisy features compared to the weights of the relevant features.

These observations suggest that even if the feature cardinality bias is not completely removed, an algorithm capable of finding several good niches in the search space is able to properly approximate the relative importance of features. Experiments are conducted in order to validate these hypothesis in the context of feature weighting and feature selection. Because the fitness functions we use are biased towards lower-dimensional spaces, we enforce bounds on the minimum number of features the individual may encode. The MNC algorithm returns a vector of weights which implicitly provides a ranking of features. We take one step further and perform feature selection in a greedy manner: the search for the best partition is performed iterating in the reduced feature space made of subsets containing the first \(d_f \) highest ranked features. In order to decide how many features to select, the cross-projection normalization is used. This approach in fact reduces consistently the search space of the sequential forward search presented in Dy and Brodley (2004): the search is unidirectional, along the ranking of the features.

6.2.2 Experiments

Experiments were designed in order to answer the following questions:
1. is the cross-projection technique proposed in Dy and Brodley (2004) feasible in a wider context?

2. is our method effective in identifying the relevant features?

3. is our feature weighting strategy effective in the clustering context?

4. is the fixed number of features in population a drawback in the context of feature weighting/selection?

Data suite

Since in the case of real data sets there is no known straight separation between the relevant and irrelevant features, the synthetic data sets created by Handl and Knowles Handl and Knowles (2006a) are used. This data is high-dimensional, contains more dimensions than data points and only few of the features are relevant to the classification task. Ten data sets of dimensionality d and containing k clusters are created and referred to as the group of data $dd-kc$ with $d \in \{2, 10\}$ and $k \in \{4, 10\}$; 100 Gaussian noise variables are introduced in all data sets. In addition, the ‘Long’ data set which contains two elongated-shape clusters that cannot be correctly detected by the k-means algorithm is used. It contains two relevant features and 100 Gaussian noise variables.

The well-known real data set Iris from the UCI Repository is also used. The Iris data set consists of 150 data items classified into 3 classes. Among the 4 features which characterize each data item, only 2 of them are relevant for the classification task.

Since in the general case the features may be expressed using different scales of measurement, all datasets are normalized to mean 0 and standard deviation 1 for each feature.

Validation of the results

Results regarding feature selection can be validated from two perspectives: the quality of the optimal partitions identified in the feature subspace reported to the known partition, and the quality of the feature set reported to the known relevant features.

The Adjusted Rand Index (ARI - equation 3.11) is used to measure the quality of a partition.
The quality of a feature subset is computed with respect to the known relevant feature set by means of two indices:

\[
recall = \frac{\#(\text{significant features identified})}{\#(\text{significant features})} \quad (6.2)
\]

\[
precision = \frac{\#(\text{significant features identified})}{\#(\text{features identified})} \quad (6.3)
\]

Vectors of weights are evaluated running k-Means (with the known number of clusters) in the modified feature space and computing the Adjusted Rand Index for the resulted partition.

Feature rankings obtained in light of the feature weights are evaluated counting the number of relevant features present in the ordering up to each rank; charts are used to visualize the number of relevant features identified across the ranks.

Experimental results

On each data set the following information is recorded at the end of each run of the MNC algorithm:

- the best solution in the final population. In case of the cross-projection normalization, because the fitness evaluation function [6.1] is not transitive, each individual is subject to \textit{population size} – 1 pairwise comparisons and the best individual is the one which records the highest number of successes. When no normalization is used the individual with the highest fitness value computed by one of the functions in section 3.4 is returned.

- the vector of feature weights computed with respect to all individuals in the final population;

- an ordering of the features with respect to their weights which gives a ranking of features.
In the first scenario under test (section 6.2.1), because the cross-projection normalization is supposed to fix the dimensionality bias, the individuals are allowed to select feature subsets of size ranging in \([1,20]\).

In the second scenario (section 6.2.1), because all clustering criteria under test are not completely unbiased with respect to the number of features and still prefer low-dimensional feature spaces, a bound on the minimum number of features is enforced. Two case studies are considered: a bound equal with half of the number of relevant features and double the number of relevant features. Therefore, the algorithm is run repeatedly with two different bounds on the minimum number of features \(\text{min}_f\) and the maximum bound set to \(\text{max}\{\text{min}_f, 20\}\). At the end of the run of the MNC algorithm, a subset of features is obtained as mentioned in Section 6.2. A greedy search is performed including at each iteration one new highest ranked feature. A total of 20 feature spaces are evaluated: feature set \(i\) contains the \(i\) highest ranked features. For each feature set, \(k\)-means is run using different numbers of clusters and the partition which gives the highest value for the fitness function is chosen. Then, the feature subsets are evaluated one against other using the cross-projection normalization to eliminate the feature cardinality bias.

Cross-projection normalization

The cross-projection normalization is investigated in the context of our multi-modal optimization algorithm. It was used previously to compare feature spaces which differ in only one attribute and using the best partitioning they produce. In our context the cross-projection strategy is used to compare more dissimilar feature sets and using suboptimal partitions since the number of clusters is variable in population until convergence.

Even if the study conducted in [Handl and Knowles (2006a)] shows that the Silhouette Width clustering criterion gives the best results in the context of feature selection approached with multi-objective algorithms, our experimental results showed that it is not suitable for the cross-projection normalization. The most appropriate clustering criterion proved to be function CritC 7.3 and the results we report further are all obtained for this evaluation function.

Table 6.1 presents the Adjusted Rand Index (ARI BIP), the number of clusters (k BIP) and the recall and precision (R/P BIP) corresponding to the best individual in the final generation of the MNC algorithm and the Adjusted Rand Index of the optimal
Problem	ARI BIP	k BIP	R/P BIP	ARI W
2d-4c norm | 0.6677 | 3.15 | 0.80/0.88 | 0.7290
no norm | **0.7066** | 3.6 | 0.90/1 | **0.7801**
2d-10c norm | 0.6236 | 7.2 | 0.90/0.95 | 0.7226
no norm | 0.6241 | 8.6 | 0.90/1 | **0.7502**
10d-4c norm | **0.7177** | 3.35 | 0.29/0.91 | **0.8228**
no norm | 0.6449 | 3.20 | 0.24/1 | 0.6556
10d-10c norm | 0.2402 | 2.55 | 0.15/1 | **0.5276**
no norm | 0.2396 | 2.40 | 0.15/1 | 0.4050
Long norm | 1 | 2 | 0.5/1 | 1
no norm | 1 | 2 | 0.5/1 | 1
Iris norm | 0.8856 | 3 | 1/1 | 0.8856
no norm | 0.8856 | 3 | 1/1 | 0.8856

Table 6.1: Results for feature selection with and without the cross-projection normalization partition returned by the K-means algorithm using the known number of clusters and the vector of weights (ARI W). The results are averages over 10 runs for each problem instance. The Wilcoxon Signed-Rank non-parametric test is conducted on the pairs of ARI scores corresponding to each problem for the case when cross-normalization is used and when it is not used; in cases when the differences are significant (at the level 1%) the winner is marked in bold.

Analyzing the best individual in population, the results show that the cross-projection normalization is not able to eliminate completely the dimensionality bias (low values for recall), and introduced a few noisy features. In case of the problem instances with only two relevant features, the use of the cross-projection normalization created lower quality individuals in the population; this conclusion is also sustained by the lower values of the ARI scores obtained for feature weighting. A significant improvement is recorded with the cross-projection normalization in the case of the data sets with 10 relevant features. Even if the recall is quite low, the distribution of the relevant features within the population lead to good feature weighting solutions for the 10d-4c problem instances. In case of 10d-10c problem instances, the bad performance is mainly due to the incapability of finding the correct number of clusters.

For the data sets Long and Iris, the method delivers the optimal results.
Figures 6.2 and 6.3 illustrate the performance of the method in the feature ranking context for the problem with 10 relevant features: the number of relevant features identified is plotted over the total number of features. The results are averages over all rankings (10 for each problem instance, 10 instances for each class of problems). They indicate that the method ranks correctly almost half of the relevant features: on average, 5 relevant features are placed on the first 5 positions in the ranking.

Bounds on the number of features

Table 6.2 presents the results obtained when the cross-projection normalization is not used but bounds are enforced on the number of features: the quality of feature weighting and subsequent feature selection solutions is recorded.

<table>
<thead>
<tr>
<th>Problem</th>
<th>ARI W</th>
<th>ARI FS</th>
<th>k</th>
<th>R/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10d-4c</td>
<td>0.8989</td>
<td>0.8321</td>
<td>3.75</td>
<td>0.82/0.48</td>
</tr>
<tr>
<td></td>
<td>0.9594</td>
<td>0.7760</td>
<td>3.1</td>
<td>0.72/0.66</td>
</tr>
<tr>
<td>10d-10c</td>
<td>0.6497</td>
<td>0.3610</td>
<td>5.21</td>
<td>0.21/0.99</td>
</tr>
<tr>
<td></td>
<td>0.7807</td>
<td>0.2306</td>
<td>3.12</td>
<td>0.21/0.99</td>
</tr>
</tbody>
</table>

Table 6.2: Results for feature weighting/selection without cross-projection normalization but with bounds enforced on the minimum number of feature.

The ‘ARI W’ values in Table 6.2 and Figures 6.2 and 6.3 show that the performance of feature weighting is better in the case of higher bounds enforced on the number of features.

Regarding the feature selection strategy performed in the last step of the algorithm based on feature ranking and the cross-projection normalization, the results show good performance on the problem 10d-4c, but very bad performance on the problem 10d-10c. These results, obtained in a greedy context on optimal rankings (on average, from the first 10 highest ranked features 9 are relevant) come to strengthen the conclusion that the cross-projection normalization is inappropriate in case of data sets with high number of clusters.
Figure 6.2: Feature ranking on 10d-4c instances

Figure 6.3: Feature ranking on 10d-10c instances

The quality of the partitions obtained with the feature weighting strategy is comparable with the results reported in Handl and Knowles (2006a); however, our results are obtained at reduced computational cost.

Discussion

Interpretation of the above results provide straight answers to the questions we have formulated in the beginning of section 6.2.2.

1. The cross-projection normalization is not suitable to all criteria functions which are appropriate in clustering. It seems to work for fitness functions which evaluate the quality of partitions based on the covariance matrices of the clusters. Furthermore, a comparison between the results obtained with the greedy search on the ranked feature set (Table 6.2) and the results obtained with the global search provided by the GA (Table 6.1) show that it is more appropriate in a greedy scenario when the search is conducted towards improving the existent good solution. In both situations, it performed badly
on the data sets with high number of clusters but satisfactory in all other cases. In the context of the GA it slowed down the convergence towards the relevant features subsets.

2. A multi-modal algorithm that searches within multiple niches for relevant feature subsets offers a good approximation of the relative relevance of features for clustering. Figures 6.2 and 6.3 sustain this conclusion.

3. The best partitions are obtained using the vector of weights, which indicate that the distribution of features obtained with the multi-modal algorithm are in accordance with their relevance and therefore their relevance can be numerically quantified.

4. When the fitness function is biased with regard to the dimensionality of the feature space, the solutions will converge to a fixed-size feature space. The two case-studies show that the algorithm is still capable to discriminate between the relevant/irrelevant features even when the individuals are forced to select an improper number of features as relevant ones. Anyway, the results suggests that a higher bound on the allowed number of features is preferable to a lower one. Future work will be conducted towards eliminating the dimensionality bias in the evaluation function.

6.3 From Feature Weighting towards Feature Selection

This section investigates an extension of the feature weighting/ranking technique described previously in the context of unsupervised clustering. The algorithm is extended here to return the optimal subset of features for clustering, overcoming the initial drawback of fixed cardinality imposed over the feature subspace. As a result, the extended method is able to return the optimum number of features in a completely unsupervised scenario. Additionally, an extension is proposed to deal with the semi-supervised version of clustering, namely supervised information is incorporated in form of similarity/dissimilarity pairwise constraints.

6.3.1 Extension to the Semi-supervised Scenario

In the semi-supervised scenario for clustering, external information is introduced in the form of a reduced number of pairwise constraints: similarity constraints indicate pairs
of data items which must share the same cluster and dissimilarity constraints indicate pairs of data items which must be put in different clusters. The number of clusters is still unknown; however, some information with regard to the minimum number of clusters allowed can be inferred from the constraints.

The semi-supervised problem stands as a junction for supervised learning and unsupervised learning. Therefore, two wrapper scenarios are proposed in literature:

- classifiers are extended to incorporate unlabeled data and
- clustering methods are modified to benefit from guidance provided by the labeled data.

In the first category, Ren et al. (2008) learn a classifier on the reduced labeled data and extend it at each iteration introducing randomly-selected unlabeled data; implicitly, new features are added iteratively in a forward-search manner.

In the second category, Handl and Knowles extend their multi-objective algorithm proposed for unsupervised feature selection (Handl and Knowles (2006b)). The Adjusted Rand Index (ARI) is used to measure the consistency with the given constraints or class labels as a third objective or in a linear and non-linear combination with the unsupervised clustering criterion. The solution recording the highest consistency reflected by the ARI score is reported from the final Pareto front.

We investigate two scenarios to introduce external information in the previous unsupervised approach. In a first scenario, the fitness function is modified to reflect the consistency of the partition with the labeled data: the product between the unsupervised clustering criterion in equation 7.3 and the ARI score involving the labeled data is used. In the second scenario we force all partitions to satisfy the given constraints by employing constrained KMeans [Wagstaff et al. (2001)] as clustering procedure.

6.3.2 Feature Selection

In the previous section feature rankings are derived based on the distribution of the features encoded in the final population of the algorithm described previously. The success of this ranking scheme is based on two premises: 1) uniform distribution of the irrelevant features and 2) high frequency of the relevant features in the final generation of the genetic algorithm. With regard to the roles of the genetic operators, the mutation
is responsible for diversity which supports the first premise while the crossover operator propagates in population the best characteristics, supporting the second premise.

Because of the bias with regard to the number of features introduced by the fitness function, the chromosomes encode feature subspaces of fixed cardinality which is a parameter of the algorithm. This is an important drawback of the algorithm: if the number of relevant features is much smaller compared to the cardinality imposed, the relevant features get suffocated and the partition resulted does not reflect the distribution of values across the relevant features. From this point of view we anticipate that the ensemble method proposed in [Hong et al. (2008)] which is based on measuring the correlation between the variables and the clustering solution suffers form the same drawback.

To overcome this drawback and to develop a method able to go further and perform feature selection we propose to vary the cardinality of the feature subspaces along the run of the genetic algorithm. The main decision factors involved are the variance of the fitness in population and the distribution of features in population reported to the cardinality of the encoded feature subspaces.

Regarding the dynamic of the fitness variance in population along the run, the typical behavior in genetic algorithms is recorded. A small variance in the first iteration is due to sub-optimal solutions. Once good schemata are retrieved, the variance increases due to the presence of a small number of high-fitness chromosomes. Then, the variance in fitness decreases as the population tends to converge. When the variance in fitness is smaller than the variance recorded in the first iteration and it remains unmodified for several iterations, the multi-modal genetic algorithm reaches convergence. It is worth noticing that we do not condition convergence to null variance, for several reasons. First of all, the multi-modal genetic algorithm is supposed to converge to multiple optima in the search space which signify different fitness values in the final iteration. Secondly, the fitness of the chromosomes is computed based on the partitions generated with k-Means; therefore, two identical chromosomes encoding the same feature subspace and equal numbers of clusters, could have been assigned different fitness values because of slightly different partitions generated as result of different initialization of the clustering algorithm.

When the conditions required for convergence are fulfilled, the distribution of selected features in population is computed. A heuristic step is employed at this stage: a feature is considered *relevant* if its frequency in population exceeds 50% (more than half of the
chromosomes in population selects it). On this basis, the number of relevant features is computed; if it is smaller than the cardinality of the feature subspace imposed to chromosomes, the cardinality is decremented by 1 and the algorithm is restarted. To benefit from the information gathered throughout the search one new chromosome is constructed encoding the features marked as relevant and adding random chosen features to reach the cardinality imposed. To avoid the hitchhiking phenomenon which was shown to cause premature convergence in GAs, only the 25% best chromosomes are kept and the rest of the population is randomly generated, encouraging diversity.

When the conditions required for convergence are fulfilled, and the cardinality imposed to the feature subsets encoded by chromosomes does not exceed the number of features computed as relevant, the algorithm returns the features marked as relevant.

6.3.3 Experiments

The experiments are carried out on the artificial data sets created by Handl and Knowles (2006a), used also in the previous section. Before applying the algorithm, all data sets are standardized to have mean 0 and variance 1 for each feature. For the semi-supervised scenario, 5 data items are extracted randomly from each class and are used further as labeled data.

The parameters of the algorithm are set as follows. The population size was set to 50. In order to ensure diversity throughout the run in MNC-GA the size of the group at selection, the size of the group at replacement and the number of groups at replacement are all set to 10% of the population size. The number of features selected in each chromosome was set to 20 and then decreased along the run as explained above; the choice of this specific value was made in order to be consistent with the experiments presented in Handl and Knowles (2006a) where the cardinality of the candidate feature subsets varies in the range 1-20.

The performance of our method is evaluated with regard to the quality of the partition obtained and with regard to the consistency between the feature subset returned and the relevant feature subset.

The partition reported in our experiments is obtained running k-Means with different numbers of clusters on the feature subset returned by our method. In the unsupervised case the best partition is extracted using the clustering criterion CritC in equation 7.3. In the semi-supervised case, in the first scenario the product between ARI and
Table 6.3: Results for unsupervised feature selection as averages over 10 runs for each data set: the ARI score and the number of clusters k for the best partition, the sensitivity and the specificity of the selected feature subspace.

<table>
<thead>
<tr>
<th>Problem</th>
<th>ARI</th>
<th>k</th>
<th>sensitivity</th>
<th>specificity</th>
<th>F-measure</th>
<th># evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d-4c</td>
<td>0.6623</td>
<td>3.98</td>
<td>0.89</td>
<td>0.93</td>
<td>0.90</td>
<td>12036</td>
</tr>
<tr>
<td>2d-10c</td>
<td>0.70</td>
<td>8.78</td>
<td>0.97</td>
<td>0.99</td>
<td>0.98</td>
<td>11767</td>
</tr>
<tr>
<td>10d-4c</td>
<td>0.9374</td>
<td>3.71</td>
<td>0.92</td>
<td>0.93</td>
<td>0.91</td>
<td>7887</td>
</tr>
<tr>
<td>10d-10c</td>
<td>0.8055</td>
<td>8.16</td>
<td>0.93</td>
<td>0.99</td>
<td>0.95</td>
<td>8222</td>
</tr>
</tbody>
</table>

The clustering criterion is used, while in the second scenario the constrained k-Means is used in conjunction with the clustering criterion. ARI is used to evaluate the partitions delivered by our method against the known true partition of the data set.

In order to judge the consistency between the returned feature subset precision (equation 6.3) and recall (equation 6.2) are used. Also, their combination under the harmonic mean, known as F-measure, is reported:

$$F\text{Measure} = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} \quad (6.4)$$

As measure of time-complexity, the number of fitness evaluations required for a complete run of the algorithm is computed.

Table 6.3 presents the results for the unsupervised scenario as averages over 10 runs for each data set, 10 data sets per problem class.

Figure 6.4 (top) includes for comparison purposes the results presented in Handl and Knowles (2006a) obtained with the multi-objective genetic algorithm in a wrapper context and also in a filter scenario based on entropy. These results were obtained in a supervised manner from the Pareto front; a small decrease in performance is recorded if an automatic extraction procedure is involved, as shown in Handl and Knowles (2006a). Figure 6.4 (bottom) presents the results obtained for semi-supervised feature selection.

The results in Table 6.3 show that the method is able to identify the relevant features and delivers high-quality partitions. The comparisons with the multi-objective
Figure 6.4: ARI - comparative results. **top:** the three lines denoted MO- correspond to the multi-objective algorithm investigated in Handl and Knowles (2006a) within a wrapper scenario with several clustering criteria used as the primary objective: Silhouette Width, Davies Bouldin and Davies-Bouldin normalized with respect to the number of features; **Entropy** corresponds to the multi-objective algorithm investigated in Handl and Knowles (2006a) within a filter scenario which is based on an entropy measure; MNC-GA corresponds to the method investigated in the current study. **bottom:** the unsupervised scenario and the two semi-supervised approaches.
algorithm, which is one of the few feasible solutions to unsupervised FS, show that the multi-modal approach behaves comparable.

Regarding the semi-supervised scenario, the gain in performance is evident compared to the unsupervised case, especially for the data sets with high numbers of clusters. The experiments show that constraining the partitions to satisfy the labeled data employing constrained k-Means generally hastens the retrieval of the relevant features and provides better results compared to the alternative approach. Additional experiments we have performed with higher numbers of labeled data items revealed that no significant improvements are obtained for the method which incorporates the supervised information in the fitness function. However, the method which makes use of Constrained k-Means continues to record performance improvements when increasing the number of labeled samples because the partitions are guaranteed to satisfy the provided labels.

6.4 Optimized clustering ensembles based on multi-modal FS

This section proposes unsupervised feature selection as a method to obtain high-quality partitions in ensemble construction. It can be considered a contribution to two research directions in unsupervised learning: in ensemble clustering it proposes a new method to construct both high-quality and diverse clusterings to be used by ensemble methods; in unsupervised feature selection it proposes a method to deal with the biases inherent due to the unsupervised nature of the problem.

The current work makes use of the MNC-GA algorithm proposed in section 6.1. As solution to the dimensionality bias of the unsupervised clustering criteria, we propose here a new scenario: the solutions of the multi-modal FS algorithm are used to generate an ensemble of partitions. Then, an ensemble clustering procedure is applied to reach consensus and to obtain a more accurate partition of the data set. This partition can be used further to perform FS in a supervised manner; however, this study is beyond the scope of this work which aims at analyzing the performance of the new ensemble construction scheme.

The MNC-GA produces optimal partitions in different feature subspaces (consequently with different numbers of clusters), grouped around several optima; the size of each niche is proportional with the quality of the corresponding partition. We use
the entire set of partitions obtained at the end of the run of MNC-GA for ensemble construction. At first glance this seems to be a drawback with regard to diversity. However, previous studies [Domeniconi and Al-Razgan (2009)] show that a weighting scheme which balances the voting mechanism towards the most compact clusters improves considerably the results of ensemble clustering. The MNC-GA algorithm achieves implicitly such a weighting mechanism through the multiplicity of the partitions obtained.

For each partition in the ensemble, a similarity matrix is computed over the set of data items, by applying the cosine function on the vectors representing the class assignments of the data items. The sum over all similarity matrices gives the final similarity matrix of the data set. The clustering problem reduces then to a graph partitioning problem.

6.4.1 Experiments

The population size in MNC-GA was set to 50. At each iteration the fitness variation in population is measured and the algorithm is stopped when no significant changes are recorded during the last 10 iterations, suggesting convergence.

For comparisons with [Domeniconi and Al-Razgan (2009)] Metis is used to solve the graph partitioning problem in the final stage of ensemble clustering. Real data sets from UCI Repository are used; some are modified as in [Domeniconi and Al-Razgan (2009)] in order to contain equal-sized classes required by the Metis algorithm. The results are validated against the known actual partitions and the error rate is computed. Table 1 reports the experimental results as averages and standard deviations over 10 runs.

<table>
<thead>
<tr>
<th>Problem</th>
<th>#items</th>
<th>#features(m)</th>
<th># classes(k)</th>
<th>k-Means</th>
<th>METIS</th>
<th>MNC-METIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>150</td>
<td>4</td>
<td>3</td>
<td>16.46±1.37</td>
<td>16.66</td>
<td>4.33±0.47</td>
</tr>
<tr>
<td>LetterAB</td>
<td>1555</td>
<td>16</td>
<td>2</td>
<td>13.16±5.60</td>
<td>10.93</td>
<td>8.04±1.58</td>
</tr>
<tr>
<td>satImage</td>
<td>2110</td>
<td>36</td>
<td>2</td>
<td>15.69±0.01</td>
<td>14.83</td>
<td>13.93±1.23</td>
</tr>
<tr>
<td>WDBC</td>
<td>424</td>
<td>31</td>
<td>2</td>
<td>20.75±0.00</td>
<td>10.14</td>
<td>9.72±0.42</td>
</tr>
</tbody>
</table>

Table 6.4: Results on real data sets. The average error rate for 10 runs is reported for k-Means and METIS algorithms applied on the original data set and for the ensemble procedure introduced in this section (MNC-METIS)

[^1]: http://glaros.dtc.umn.edu/gkhome/
6.5 Conclusions

Multi-modal optimization by means of crowding genetic algorithms has been shown to be a successful scenario in searching for relevant features in clustering. It offers solutions to the bias induced by the clustering criteria with respect to the cardinality of the feature subspace and provides high-quality ensembles of partitions.
Chapter 7

A unifying criterion for unsupervised clustering and feature selection

Unsupervised feature selection and unsupervised clustering can be successfully approached as optimization problems by means of global optimization heuristics if an appropriate objective function is considered. This chapter introduces an objective function capable of efficiently guiding the search for significant features and simultaneously for the respective optimal partitions \cite{Breaban and Luchian (2010)}. Experiments conducted on complex synthetic data suggest that the function we propose is unbiased with respect to both the number of clusters and the number of features.

7.1 Introduction

In view of the definition of clustering, feature selection can be stated as an optimization problem:

find

$$w^* = \arg\max_w Q(S')$$

where

- \(w = \{w_1, w_2, ...w_m\} \in \{0, 1\}^m \) is a binary string;
• S' is the data set constructed from the original set S and the string w as follows:
$S' = \{d'_1, d'_2, ..., d'_n\}$, $d'_i = \{w_1 \cdot f_{i1}, w_2 \cdot f_{i2}, ..., w_m \cdot f_{im}\}, \forall i = 1..n$;

• $Q(S')$ is a function which measures the tendency of data items in set S' to group into well-separated clusters; it can be expressed by means of the entropy (filter approaches) or of a fitness function which measures the quality of a partition detected by a clustering algorithm (wrapper approaches). In the latter case feature weighting is akin to solving the clustering problem in different feature spaces.

Our study approaches unsupervised feature selection in a wrapper manner. In this regard, a new optimization criterion largely unbiased with respect to the number of clusters is introduced in section 7.2. Section 7.3 discusses the normalization of the clustering criterion with respect to the number of features. Section 7.4 presents a framework for performing unsupervised feature selection in conjunction with unsupervised clustering and summarizes the experimental results. Section 7.5 draws conclusions and points to future work.

7.2 Unsupervised clustering: searching for the optimal number of clusters

Classical clustering methods, such as k-Means and hierarchical algorithms, are designed to use prior knowledge on the number of clusters. In k-Means, an iterative process reallocates data items to the clusters of a k-class partition in order to minimize the within-cluster variance. Hierarchical clustering adopts a greedy strategy constructing trees/dendrograms based on the similarity between data items; each level in these dendrograms corresponds to partitions with a specific number of clusters and the method offers no guidance regarding the level where the optimal partition is represented (hence, the optimal number of clusters).

The algorithms mentioned above are local optimizers. In order to design a global optimizer for the clustering problem, a criterion for ranking all partitions, irrespective of the number of clusters, is needed. The problem is far from being trivial: with no hint on the number of clusters, common-sense clustering criteria like minimizing the variance within clusters and/or maximizing the distance between clusters guide the search towards the extreme solution - the n-class partition with each class containing exactly one point.
Existing studies in the literature propose and experiment with various clustering criteria: Bezdek and Pal (1998); Kim and Ramakrishna (2005); Milligan and Cooper (1985); Raskutti and Leckie (1999). The main concern is the bias these criteria introduce towards either lower or higher numbers of clusters. Since this bias proved to be hard to eliminate, multi-objective algorithms were proposed [Handl and Knowles (2005)], which evaluate the quality of a partition against several criteria. The main drawback remains the fact that identifying the optimal solution within the final Pareto front is not straightforward.

The clustering criterion used in the present work originates in the analogy with the Huygens' theorem from mechanics, analogy introduced by Diday et al. (1982) and used further by Luchian (1995). Considering the data set S in the above definitions, the following notations are used:

$$W = \sum_{i=1}^{k} \sum_{d \in C_i} \delta(c_i, d)$$ is the within-cluster inertia computed as the sum of the distances between all data items d in cluster C_i and their cluster center c_i;

$$B = \sum_{i=1}^{k} |C_i| \cdot \delta(c_i, g)$$ is the between-cluster inertia computed as the sum of the distances between the cluster centers c_i and the center of the entire data set g weighted with the size of each cluster $|C_i|$.

$$T = \sum_{i=1}^{n} \delta(d, g)$$ is the total inertia of the data set computed as the sum of the distances between the data items and the center g of the data set.

In the above center is the gravity center.

The above-mentioned analogy with mechanics can only be applied as an approximation. The simplest approximation of the Huygens theorem is then

$$W + B \approx T \quad (7.1)$$

According to the above formula, for any partition of the data set, regardless the number of clusters, the sum W+B is merely constant. Figure 7.1 illustrates this for the case of a data set with 10 random Gaussian features/variables: W, B, and W+B are computed for locally optimal partitions of the data set obtained by the k-means algorithm with the number of clusters varying between 2 and 50.

In view of the Huygens theorem, if the number of clusters is fixed, minimizing W or maximizing B are equivalent clustering criteria which can be used in general heuristics [Diday et al. (1982)]. Note that the within-cluster variance is a widely used clustering
A unifying criterion for unsupervised clustering and feature selection

Figure 7.1: The within-cluster inertia W, between-cluster inertia B and their sum plotted for locally optimal partitions obtained with k-means over different numbers of clusters.

criterion in supervised clustering. The Huygens theorem provides an equivalent clustering criterion (namely B), at a lower computational cost, which can be used in a nearest-neighbor assignment scenario [Luchian (1995)].

When the number of clusters is unknown both these criteria are useless: they direct the search towards the extreme n-class partition. However, a corollary of the Huygens theorem in conjunction with penalties against the increase of the number of clusters proved to work in unsupervised clustering: $\left(\frac{B}{T} \right)^k$ is used in [Luchian et al. (1994)]; an equivalent (in view of the Huygens’ theorem) function $\left(\frac{1}{1 + W/B} \right)^k$ is used in [Luchian and Luchian (1999)] in order to use local Mahalanobis distances. Unfortunately, extensive experiments we conducted recently with these fitness functions, showed that they are appropriate only for data sets with a small number of features; other penalization factors may therefore be necessary for higher-dimensional spaces.

Both within-cluster inertia and between-cluster inertia are necessary for a reliable comparison and evaluation of partitions in different feature subspaces. In this regard, we minimize the within-cluster inertia and maximize the between-cluster inertia simultaneously, through maximizing

$$ F = \left(\frac{1}{1 + W/B} \right). \quad (7.2) $$

In order to study the bias this function induces on the number of clusters in unsupervised clustering, we used the k-Means algorithm to derive partitions for data sets consisting of between 2 and 20 random Gaussian features. As shown in figure 7.2 left, the function F is monotonically increasing with respect to the number of clusters, taking smaller values for higher dimensional data sets. Figure 7.2 right penalizes the increase in the number
of clusters: F^k is represented by the dotted lines and $F^{\log_2(k+1)+1}$ is represented by the continuous lines.

Figure 7.2: Left: function F plotted for partitions obtained with k-Means over different numbers of clusters, for data sets with 2, 4, 10 and 20 features; Right: function F is penalized introducing at exponent k (dotted lines) and $le(k) = \log_2(k+1) + 1$ (continuous lines).

Figure 7.2 presents the behavior of function F when the Euclidean metric is used as distance function: $\delta(x,y) = (\sum_{i=1}^m |x_i - y_i|^q)^{1/q}$ with $q = 2$. Experiments showed that using the Manhattan metric ($q = 1$) and Chebyshev metric ($q = \infty$) - the extreme cases of the Minkovski metric, identical plots as the ones in Figure 7.2 are obtained; this suggests that function F records the same behavior under all Minkovski metrics. Moreover, experimental studies with fractional norms gave the same results: function F is biased towards lower numbers of features and higher numbers of clusters. For unsupervised clustering, its use would fail to identify the optimal number of clusters and would favor the partition with the maximum allowed number of clusters; for feature selection its use would fail to identify all relevant features and would favor the subset with the minimum allowed cardinality.

Exponent k reverses the bias towards low numbers of clusters in all cases, while the logarithmic exponent is able to eliminate any bias for the data sets with more than 10 features. For lower dimensions, the logarithmic factor is, however too weak. In order to make it work in low dimensional spaces, a new factor which penalizes F linearly in the number of features m is introduced.

The new criterion we introduce for measuring the quality of a partition is

$$CritC = (a \cdot F)^{le(k)} \quad (7.3)$$
where $a = \frac{2^m}{(2^m + 1)}$ and $\ell c(k) = \log_2(k + 1) + 1$ (logarithmic exponent).

CritC takes values in range $[0,1]$ and should be maximized.

This function is studied in the sequel in the context of unsupervised clustering; we test its capacity of detecting simultaneously the optimal partition and the optimal number of clusters (see section 4).

7.3 Unsupervised feature selection: searching for the optimal number of features

Wrapper methods for feature selection evaluate subsets of features based on the quality of the best partition generated by each subset. In this scenario, an unsupervised clustering criterion unbiased with respect to the number of clusters and with respect to the number of features, able to compare different partitions is required in order to assess the quality of feature subsets. However, existing unsupervised clustering criteria are not appropriate/fair evaluators in the context of feature subsets of different cardinalities: they are based on computing some distance function for every pair of data items. Since dimensionality influences the distribution of the distances between data items, it induces a bias in the objective function with respect to the size of the feature space. To illustrate this, consider the case of Minkowski distance functions: the mean of the distribution increases with the size of the feature space because one more feature introduces one more positive term into the sum; combined with an objective function which minimizes the between-cluster variance, feature selection will be strongly biased towards low dimensionality. This example is not unique: it is also the case of the most popular unsupervised clustering criteria - Davies- Bouldin Index, Sillhouette Width - which are also biased towards low dimensionality.

The influence of the dimensionality of the data set on distance-based data analysis methods - including clustering techniques, was thoroughly investigated in [Aggarwal et al. (2001)](https://www.cs.columbia.edu/~aggie/papers/jam这一刻). The authors show that in high-dimensional spaces fractional norms are more appropriate to discriminate between data items. As a consequence, clustering algorithms using fractional norms to measure the distance between data items of large dimensionality, are more successful. However, fractional norms are not a solution when a large number of noisy features are present in data.
In the available literature we did not come across an objective function (ranking criterion) to provide a ranking of partitions with regard to their quality, irrespective of the number of features. It is the goal of this study to propose a function which, in the search space defined by all possible subsets of features in conjunction with a variable number of clusters, assigns a ranking score to each partition that may be defined. The function we propose may be used by any heuristic searching for the best partition when both the number of features and the number of clusters vary during the search.

As shown in Figure 7.2, the function \(\text{CritC} \) (proposed in section 2), monotonically decreases with the number of features even if factor \(a \) penalizes small feature spaces. This function would point the search towards small feature subsets. In order to eliminate this bias with respect to the number of features \(m \), we use the factor \(le(m) = \log_2(m+1) + 1 \) with the goal of penalizing small values of \(m \). Our new optimization function is:

\[
\text{CritCF} = \frac{1}{\text{CritC}^{\frac{1}{le(m)}}} = (a \cdot F)^{\frac{le(k)}{le(m)}}
\]

(7.4)

Studies we undertook on datasets containing Gaussian features, show that the function \(\text{CritCF} \) removes considerably the bias with regard to both the number of clusters and the number of features, but not completely. Yet, this function is the winner of a contest with only a few hand-made competitors; a safe assumption would be that better candidates may exist. We tested this assumption through an automated search process using Genetic Programming; this search is described in the rest of this section.

Because \(F \) is influenced by both the number of features \(m \) and the number of clusters \(k \), we search for a function expressing this dependency. The problem is formulated as follows: given tuples \((m, k, F)\), an equation satisfied by them must be determined. We deal in fact with symbolic regression: the optimization process has to work simultaneously on the analytical form of the function, the variables involved, and the coefficients.

Using datasets containing only standard Gaussian features, optimal partitions were constructed with the k-Means algorithm varying the number of clusters \(k \) in the range 2-49 and the number of features \(m \) in the range 2-20. Then, using formula 7.2 the values of \(F \) were computed for all resulted partitions.

Tuples \((m, k, F)\), generated in this way, are given as input to a genetic programming algorithm [Koza (1992)]. The chromosomes are trees which are decoded into functions
over the two variables m and k. The crossover and mutation operators are similar to those described by Koza. The fitness function computes the ability of each chromosome to predict the values of F in terms of absolute error of the encoded solution relative to the input data set. The set of operators is $\{+, -, \cdot, / \}$; additionally, the natural logarithm, the base 2 logarithm and the power function are used.

A chromosome derived from CritCF function was introduced in the initial population consisting of random generated individuals. CritCF should deliver a constant value for all the partitions derived in this part of the experiments; however, slight variations exist and an average denoted by $const$ is computed over all values. Then, F is extracted from formula \[F = \frac{1}{a} \cdot (const)^{\frac{m}{k}} \] (7.5)

Several runs of the GP algorithm with different settings were performed, each run consisting of evaluating about 20 000 new chromosomes derived from the application of genetic operators. None of the chromosomes generated throughout the run outperformed the chromosome encoding formula 7.5. The absolute error obtained by the best chromosome recorded during the runs of the algorithm was 41% higher compared to the absolute error recorded by the chromosome encoding formula 7.5.

These first experiments strongly suggest that the function CritCF we propose is a near-optimal solution; it is largely unbiased with respect to both the number of clusters and the number of features. It takes values in range $[0,1]$ and should be maximized in order to simultaneously obtain the best feature subset and partition. This function is further studied on synthetic complex data sets.

7.4 Experiments

7.4.1 The unsupervised clustering criterion

In order to study the criterion CritC, we undertook comparative studies on complex synthetic data sets against the most widely used criteria for unsupervised clustering.
The search method

In order to search for the best clustering in a fixed feature space, the K-means algorithm is run over the given data set with the number of clusters \(k \) ranging from 2 to 50. In order to avoid suboptimal solutions due to unfavorable initialization, K-means is run 10 times and only the best solution with regard to the within-cluster inertia is reported. This is what we further call one k-Means run.

The data suite

The performance of our clustering criterion \(\text{CritC} \) in finding the optimal clustering is evaluated under various scenarios: data sets with lower or higher dimensionality, some having optimal partitions with a small number of clusters and others having optimal partitions with a high number of clusters. In this regard the complex benchmark made available by Julia Handl\footnote{http://dbkgroup.org/handl/generators/} and Knowles (2005) is used; it represents a standard cluster model built using multivariate normal distributions. The clusters in a data set are built iteratively based on covariance matrices which need to be symmetric and positive definite. Overlapping clusters are rejected and regenerated, until a valid set of clusters has been found. The covariance matrices are built in such a way to encourage the production of elongated clusters; this is the reason why k-Means fail to identify in some test cases the correct partition, as the results in the experimental section show.

Ten data sets of dimensionality \(d \) and containing \(k \) clusters are created and referred to as the group of data \(dd-kc \), with \(d \in \{2, 10\} \) and \(k \in \{4, 10, 20, 40\} \). The size of each cluster varies uniformly in the range \([50,500]\) for the data sets with 4 and 10 clusters and in range \([10,100]\) for the data sets with 20 and 40 clusters.

A total of 120 data sets were used in order to study our criterion in the context of unsupervised clustering.

Validation measures: the Adjusted Rand Index

Each partition returned by k-means is evaluated against the optimal clustering using the Adjusted Rand Index (ARI) \cite{Hubert1985}.
7.4.2 The unsupervised feature selection criterion

Search methods

Wrapper feature selection methods usually involve two distinct heuristics: one for searching the feature space for the optimal feature subset and the other one for searching the optimal partition, given a feature set. In our approach the latter is performed using the k-Means algorithm. The former is conducted with two heuristics: a greedy method named sequential forward selection which is widely used in the context of feature selection and a global optimization heuristic. Extensive experiments employing two versions of the greedy algorithm and a multi-modal optimization algorithm provide insight into the fitness landscape under our criterion.

(A) Sequential forward Selection

Forward selection is a greedy algorithm widely used for feature selection \cite{Dy2004, Handl2006, Liu1998}. In our implementation it starts with the empty set and iteratively adds the feature which, added to the already selected features gives the highest value for the CritCF function. For each candidate feature the k-Means algorithm is run repeatedly with the number of clusters ranging from 2 to 17 and the best partition is chosen using the CritCF function. The range of values used for the number of clusters was chosen in order to be consistent with the genetic algorithm employed in subsection B) as the global search method.

Two versions of this algorithm corresponding to different halting conditions are considered. In a first scenario, the algorithm is stopped when none of the remaining features brings any improvement when added to the already selected ones.

A second version of the greedy algorithm is inspired from the experiments described in \cite{Handl2006} where a fixed number of features are selected and the best solution is eventually chosen from a Pareto front. As in \cite{Handl2006}, the algorithm selects iteratively up to 20 features which is akin to ranking the most relevant 20 features. The best solution is chosen further based on the fitness values computed with CritCF for each group of the first \(i\) features.

The first algorithm has a reduced time complexity due to the halting condition but it gets more easily trapped in local optima.
Figure 7.3: Forward Selection 1: Input - the set of all features F; Output - a subset S containing relevant features

$$\begin{align*}
\text{bestFitness} & \leftarrow 0 \\
S & \leftarrow \emptyset \\
\text{continue} & \leftarrow \text{TRUE} \\
\textbf{while} \ \text{continue do} \\
\text{continue} & \leftarrow \text{FALSE} \\
\textbf{for} \ \text{each feature } f \ \text{in } F \ \textbf{do} \\
\text{bestLocalFitness} & \leftarrow 0 \\
\textbf{for all } n\text{Classes} \ \text{such that } 2 \leq n\text{Classes} \leq 17 \ \textbf{do} \\
\text{if } (\text{bestLocalFitness} < \text{CritCF}(\text{kMeans}(n\text{Classes}, S \cup \{f\}))) \ \text{then} \\
\text{update}(\text{bestLocalFitness}) \\
\text{end if} \\
\textbf{end for} \\
\text{if } (\text{bestFitness} < \text{bestLocalFitness}) \ \text{then} \\
\text{bestFitness} & \leftarrow \text{bestLocalFitness} \\
\text{featureToAdd} & \leftarrow f \\
\text{continue} & \leftarrow \text{TRUE} \\
\text{end if} \\
\textbf{end for} \\
\textbf{if} \ \text{continue} \ \textbf{then} \\
S & \leftarrow S \cup \{\text{featureToAdd}\} \\
F & \leftarrow F - \{\text{featureToAdd}\} \\
\textbf{end if} \\
\textbf{end while}
\end{align*}$$
The number of evaluations required by the greedy forward feature selection algorithm with variable number of clusters is

\[(k_{\text{max}} - 1) \cdot d_{\text{max}} \cdot d\]

(7.6)

where

\[
\begin{align*}
\bullet & \quad d \text{ is the dimensionality of the data set;} \\
\bullet & \quad d_{\text{max}} \text{ is the maximum cardinality of the feature subsets;} \\
\bullet & \quad k_{\text{max}} \text{ is the maximum number of clusters allowed while searching for the best partition.}
\end{align*}
\]

For Handl’s data sets with 100 noisy variables used in this study, the second version of the greedy algorithm searching for at most 20 relevant features would thus require at least 32 000 evaluations. The number of evaluations required by the first version of the algorithm depends on the number of relevant features identified.

(B) A Genetic Algorithm

The Multi-Niche Crowding Genetic Algorithm (MNC GA) presented in section 6.1 of this thesis is used to search for both the optimal feature subset and the respective optimal number of clusters.

For comparison purposes, many parameter values in our experiments reproduce those reported in Handl and Knowles (2006a). The maximum number of clusters allowed during the search is \(k_{\text{max}} = 17\) (only 4 bits encode the number of clusters). The search space is restricted to solutions with a maximum of \(d_{\text{max}} = \min\{20, d\}\) features from a total of \(d\) features. In addition, in order to speed up the process of identifying the optimal feature subset, the maximum number of features selected within a chromosome is gradually increased throughout the run from a maximum of 5 features during the first generations to 10, then 15 and finally 20 at the end of the run. The risk of getting trapped in local optima due to this incremental search (specific to greedy algorithms) is tackled by the crowding GA through maintaining multiple niches in the search space.

The size of the population in MNC-GA is set to \(\text{pop.size} = 100\) individuals. The following values give an appropriate balance between exploration/exploitation and a moderate fitness pressure at replacement: \(s = 0.10 \cdot \text{pop.size}, \ g = 0.15 \cdot \text{pop.size}, \ f = 0.10 \cdot \text{pop.size.}\)
The most time-consuming part of the algorithm is the evaluation step which mainly consists of finding the best partition for a given feature set and a given number of clusters. Each run of the MNC-GA algorithm consisted of 10,000 iterations which correspond to 10,000 evaluations.

At the end of each run of the MNC-GA algorithm a local search was performed around the best individual in order to avoid sub-optimal numbers of clusters: for the best feature subset, the k-Means algorithm was run with the number of clusters varying from $k - 2$ to $k + 2$ where k is the number of classes encoded by the best chromosome. The best partition is chosen to be the one with the best (highest) CritCF value.

The data suite

In order to validate our criterion in the context of unsupervised wrapper feature selection, a total of 40 data sets were used in this part of the experiments.

Using the multivariate Gaussian cluster model from Section 4.1.3, [Handl and Knowles 2006a] designed small data sets for validating feature selection methods. They created ten data sets of dimensionality d and containing k clusters, with $d \in \{2, 10\}$ and $k \in \{2, 4, 10\}$. The size of each cluster is uniformly distributed within the set $\{10, \ldots, 50\}$.

Handl and Knowles introduced 100 Gaussian noise variables in each data set in order to create high-dimensional data, which contain in some cases more dimensions than data points, a few features being relevant for the classification task. We denote these data sets by dd-kk-100-gaussian.

We also evaluate the performance of criterion CritCF when other kind of noise than Gaussian is involved. Therefore, we replaced the Gaussian noisy variables introduced within the datasets designed by Handl and Knowles with 100 uniform noisy variables and thus 40 new data sets were created and denoted in the experimental section as dd-kk-100-uniform.

Tests were also conducted on some real data sets form UCI Repository. The datasets used represent hand-written digits and letters. The Digits data set has 64 attributes representing pixels on a 8x8 grid and the Letters data set consist of 16 attributes corresponding to a 4x4 grid. Their values express the intensity of the color.

Since features may be expressed on different scales, all datasets are normalized such that each feature has mean 0 and standard deviation 1.
Validation measures

Results regarding feature selection can be validated from two perspectives: the quality of the best found partition reported to the (known) optimal partition, and the quality of the feature set reported to the (known) relevant features.

The quality of a partition is measured by the Adjusted Rand Index.

The quality of a feature subset is computed with respect to the known relevant feature set by means of two indexes from information retrieval: precision (equation 6.3) and recall (equation 6.2). Also their combination under harmonic mean known as F-measure (equation 6.4) is used.

7.4.3 Results

Results for unsupervised clustering

One observation is mandatory for the sake of further discussion: the two criteria CritC in formula 7.3 and CritCF in formula 7.4 deliver the same ordering on the set of all partitions in the context of unsupervised clustering in a fixed feature space. Therefore, the two criteria can be considered as equivalent for the first task investigated in this chapter which is unsupervised clustering in a fixed feature space; this discussion is conducted further for the CritCF function.

In order to verify that the clustering criterion does not suffer from any bias with regard to the number of clusters, tests are made within a larger range. For each data set, k-Means is run with the number of clusters varying in the range [2, 50].

In case of the data sets dd-kk-100 designed for feature selection, k-Means is run on the reduced data consisting only of the relevant features. For these test cases, k-Means is run with the number of clusters varying in range [2, 17], in order to be able to report these results as upper bounds for feature selection.

Subsequently, the three unsupervised clustering criteria (Davies Bouldin Index, Silhouette Width and CritCF) are computed for each of the 49 (respectively 16) partitions returned by k-Means, in order to select the partition with the optimal number of clusters. The ARI score and the number of clusters k are recorded for the winning partition.
The best partition for each dataset is designated to be the one with the highest ARI score.

The procedure described above was applied 20 times to each data set. Table 7.1 presents averages and standard deviations over the ARI scores and the numbers of clusters for best partitions with respect to: 1. the ARI score recorded by k-Means (Best), 2. Davies-Bouldin Index (DB), 3. Silhouette-Width (SW) and 4. our criterion.

Statistical tests were conducted to verify if the differences of the ARI scores are significant enough to extract a winner for each type of problem. In this regard, the 3 groups of ARI values corresponding to the 3 clustering criteria, obtained through repeated independent runs of the algorithm on instances of a given type of problem \((dd-\text{k})\) are analyzed. We skip the Kruskal-Wallis test for testing equality of population medians among the 3 groups because it assumes identically-shaped distributions for all group. This condition does not hold: the standard deviation is significantly larger in case of Davies-Bouldin and Silhouette-Width criteria. One reason for the high variance is a bad performance on one or several test instances. For example, in case of the problem 2d-4c all clustering criteria select partitions with a number of clusters ranging from 3 to 5, except in case of the instance 2d-4c-no5 for which DB and SW criteria select the partition with only 2 clusters. An opposite example is the problem 10d-4c-100: for the instance 10d-4c-100-no5 CritCF selects partitions with a number of clusters ranging from 3 to 5, while SW and mostly DB select partitions with a higher number of clusters, even up to the maximum allowed value - 17 clusters.

The Wilcoxon Signed-Rank non-parametric test was applied for each problem on the group of ARI scores determined with CritCF function and the group with the highest average ARI score among the other two criteria. Where differences are significant (at the level 1%) the winner is marked in bold.

Table 7.1 shows that the new criterion CritCF achieves the best results in unsupervised clustering in most test cases. In a few cases it is outperformed by the Silhouette Width Index. However, compared to Silhouette Width Index which has quadratic complexity in the number of data items, CritCF has linear time complexity. The highest difference in performance between CritCF and the two opponents can be observed in case of smaller (sparser) data sets \(dd-4c-100\) due to the poor estimation of the number of clusters by Davies-Bouldin Index and Silhouette Width Index. The high values of the standard deviation for the number of clusters and, implicitly, for the ARI scores in
Table 7.1: Results on synthetic and real data sets - partitions obtained with the k-Means algorithm. The ARI score and the number of clusters \(k\) reported here, are computed as averages over 20 runs per data set. For each data set, four partitions are reported: the one with the highest ARI value (Best) and the partition found by Davis-Bouldin Index (DB), Silhouette Width (SW) and CritCF function, respectively.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Best ARI</th>
<th>DB ARI</th>
<th>SW ARI</th>
<th>CritCF ARI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k=4.02</td>
<td>k=3.30</td>
<td>k=3.70</td>
<td>k=4.01</td>
</tr>
<tr>
<td></td>
<td>±0.04</td>
<td>±0.14</td>
<td>±0.78</td>
<td>±0.79</td>
</tr>
<tr>
<td>2d-4c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>2d-10c</td>
<td>0.8359</td>
<td>0.6869</td>
<td>0.7800</td>
<td>0.7945</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>2d-20c</td>
<td>0.9133</td>
<td>0.8046</td>
<td>0.8700</td>
<td>0.8902</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>2d-40c</td>
<td>0.8347</td>
<td>0.7070</td>
<td>0.8046</td>
<td>0.8902</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>10d-4c</td>
<td>0.9711</td>
<td>0.9158</td>
<td>0.9044</td>
<td>0.9327</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>10d-10c</td>
<td>0.9246</td>
<td>0.8930</td>
<td>0.9178</td>
<td>0.9636</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>10d-20c</td>
<td>0.9744</td>
<td>0.9189</td>
<td>0.9479</td>
<td>0.9636</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>10d-40c</td>
<td>0.9582</td>
<td>0.8849</td>
<td>0.9282</td>
<td>0.9459</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±2.09</td>
<td>±0.14</td>
<td>±3.35</td>
</tr>
<tr>
<td>2d-4c-100</td>
<td>0.8090</td>
<td>0.6969</td>
<td>0.6419</td>
<td>0.7467</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td>±0.83</td>
<td>±0.15</td>
<td>±1.00</td>
</tr>
<tr>
<td>2d-10c-100</td>
<td>0.7913</td>
<td>0.6608</td>
<td>0.6880</td>
<td>0.7420</td>
</tr>
<tr>
<td></td>
<td>±0.06</td>
<td>±2.19</td>
<td>±0.15</td>
<td>±1.42</td>
</tr>
<tr>
<td>10d-4c-100</td>
<td>0.9610</td>
<td>0.7963</td>
<td>0.8600</td>
<td>0.9263</td>
</tr>
<tr>
<td></td>
<td>±0.05</td>
<td>±0.32</td>
<td>±0.26</td>
<td>±1.23</td>
</tr>
<tr>
<td>10d-10c-100</td>
<td>0.8805</td>
<td>0.8392</td>
<td>0.8600</td>
<td>0.8327</td>
</tr>
<tr>
<td></td>
<td>±0.04</td>
<td>±1.19</td>
<td>±0.06</td>
<td>±1.39</td>
</tr>
</tbody>
</table>

Case of these latter criteria show that they are more sensitive to minor changes in the structure of clusters. For a given problem instance, in some experiments these criteria were able to identify the optimal clustering but in others they showed a bias towards a higher number of clusters (each experiment consisting of running k-Means with varying
number of clusters). In case of the Silhouette Width index, this sensitivity can be explained by the fact that it is dependent on each particular assignment (to clusters) of the data items rather than on cluster representatives. In the case of the k-Means algorithm, which is highly dependent on the initialization step and yields near-optimal partitions, this sensitivity is a drawback. CritCF proved to be more robust: in repeated runs on the same problem instance, it chose partitions with the same number of clusters.

Results for unsupervised wrapper feature selection

Table 7.2 presents the average performance of the genetic algorithm MNC-GA making use of CritCF as fitness function on the datasets with Gaussian noise: the ARI score for the best partition obtained in the selected feature space and its number of clusters \(k\), the size \(m\), the recall and the precision of the selected feature subset. The average performance over 20 runs of our method is reported for these datasets in order to make comparisons with the algorithms investigated in [Handl and Knowles (2006a)](Handl and Knowles 2006a). Figure 7.4 shows the comparative results on the performance of CritCF and the algorithms investigated in [Handl and Knowles (2006a)](Handl and Knowles 2006a) for feature selection:

- the three red lines correspond to the MNC-GA and Forward Selection algorithms both employing CritCF as evaluation criterion
- the two blue lines correspond to the multi-objective algorithm investigated in [Handl and Knowles (2006a)](Handl and Knowles 2006a) with Silhouette Width and Davies Bouldin criteria used as the primary objective;
- the performance of a filter method is represented in yellow. The method was also investigated in [Handl and Knowles (2006a)](Handl and Knowles 2006a). It returns a Pareto front of solutions over two objectives: the minimization of an entropy measure and the maximization of the number of features in order to balance the bias introduced by the first objective. After the optimal feature subset is extracted the corresponding ARI value is obtained using k-Means with the optimal number of clusters. This procedure is quite unfair since the other methods receive no input regarding the number of clusters.

The gray line corresponds to the best partition that can be obtained using k-Means with the exact number of clusters, on the optimal standardized feature subset consisting of the known relevant features. These values provide an upper bound for the methods under investigation.
All methods implemented in [Handl and Knowles (2006a)] return a range of solutions corresponding to different feature cardinalities. The results presented in [Handl and Knowles (2006a)] and cited in this chapter are obtained in the following way: for a given Pareto front, the feature set with the best F-Measure is selected. This procedure requires supplementary input and thus makes the comparison unfair for the methods which use the CritCF criterion and work in an entirely unsupervised manner.

<table>
<thead>
<tr>
<th>Problem</th>
<th>ARI</th>
<th>k</th>
<th>m</th>
<th>recall</th>
<th>precision</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d-4c-100-Gaussian</td>
<td>0.5649</td>
<td>6.27</td>
<td>3.85</td>
<td>0.93</td>
<td>0.80</td>
<td>0.86</td>
</tr>
<tr>
<td>±0.28 ± 4.77 ± 4.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d-10c-100-Gaussian</td>
<td>0.7281</td>
<td>9.52</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>±0.07 ± 3.40 ± 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10d-4c-100-Gaussian</td>
<td>0.9087</td>
<td>3.95</td>
<td>7.36</td>
<td>0.74</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>±0.13 ± 0.45 ± 1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10d-10c-100-Gaussian</td>
<td>0.8528</td>
<td>8.51</td>
<td>9.20</td>
<td>0.92</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>±0.07 ± 1.23 ± 0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.2: Results for feature selection obtained with the MNC-GA algorithm using CritCF, on data sets with gaussian noise (100 gaussian features). The ARI score for the best partition, the number of clusters \(k \), the number of features \(m \), the recall and the precision of the selected feature space are computed as averages over 20 runs on each data set.

Table 7.3 presents the results obtained with the two versions of the Forward Selection algorithms on the same datasets containing Gaussian noise.

To estimate the real performance of criterion CritCF, an exhaustive search method should be employed. Because under an exhaustive search the problem becomes intractable, we present in Figure 7.5 the best results (and not averages) obtained by the genetic algorithm. In this way we obtain a lower bound for the performance of our criterion if an exhaustive search should be employed. For each problem instance, from 5 runs of MNC-GA on each problem instance, the solution having the highest CritCF fitness value is retained. For each class of problems (each class consisting of 10 problem instances) the results are summarized as boxplots over the Adjusted Rand Index. Experiments are performed both for gaussian and uniform noise. For each problem, Figure 7.5 presents the following:
Figure 7.4: Results for the datasets containing Gaussian noise. Adjusted Rand Index (top) and F-Measure (bottom) for the best partition obtained in the feature subspace extracted with various methods: the three red lines correspond to the MNC-GA and the two versions of Forward selection algorithm using CritCF; the two blue lines correspond to the multi-objective algorithm investigated in Handl and Knowles (2006a) using Silhouette Width and Davies Bouldin as the primary objective. The yellow line corresponds to a filter method investigated in Handl and Knowles (2006a) using an entropy measure. The gray line corresponds to the best partition that can be obtained with k-Means run on the optimal standardized feature subset.

- the performance of KMeans over the datasets consisting only of relevant features and given the correct number of clusters (supervised clustering),

- the performance of KMeans over the datasets consisting only of relevant features and employing CritCF to determine the correct number of clusters (unsupervised clustering),
A unifying criterion for unsupervised clustering and feature selection 142

<table>
<thead>
<tr>
<th>Problem</th>
<th>Alg.</th>
<th>ARI</th>
<th>k</th>
<th>m</th>
<th>recall</th>
<th>precision</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d-4c-100-gaussian</td>
<td>FS1</td>
<td>0.6321</td>
<td>5.60</td>
<td>2.30</td>
<td>1</td>
<td>0.90</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>0.6391</td>
<td>5.4</td>
<td>2.3</td>
<td>1</td>
<td>0.90</td>
<td>0.94</td>
</tr>
<tr>
<td>2d-10c-100-gaussian</td>
<td>FS1</td>
<td>0.7464</td>
<td>9.3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>0.7491</td>
<td>9.4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10d-4c-100-gaussian</td>
<td>FS1</td>
<td>0.8580</td>
<td>3.80</td>
<td>7.20</td>
<td>0.72</td>
<td>1</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>0.9055</td>
<td>4</td>
<td>7.5</td>
<td>0.75</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>10d-10c-100-gaussian</td>
<td>FS1</td>
<td>0.8084</td>
<td>7.70</td>
<td>9.00</td>
<td>0.90</td>
<td>1</td>
<td>0.9428</td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>0.8648</td>
<td>8.7</td>
<td>9.4</td>
<td>0.94</td>
<td>1</td>
<td>0.9678</td>
</tr>
</tbody>
</table>

Table 7.3: Results for feature selection obtained with the two versions of the Forward Selection algorithm using CritCF on data sets with gaussian noise (100 gaussian features). The ARI score for the best partition, the number of clusters k, the number of features m, the recall and the precision of the selected feature space are listed.

- the performance of KMeans over the datasets containing 100 gaussian noisy features and employing CritCF to determine simultaneously the correct number of clusters and the relevant features (unsupervised wrapper FS)

- the performance of KMeans over the datasets containing 100 noisy features with uniform distribution and employing CritCF to determine simultaneously the correct number of clusters and the relevant features (unsupervised wrapper FS).

Figure 7.5: The Adjusted Rand Index for the partitions obtained as follows: supervised clustering on the relevant features, unsupervised clustering on the relevant features using CritCF, unsupervised wrapper feature selection using CritCF on datasets containing 100 gaussian features and on datasets containing 100 uniform features. Each boxplot summarizes 10 values corresponding to the 10 problem instances in each class.
Comparing the ARI scores obtained in the original feature space consisting only of relevant features (Table 7.1) with the ARI scores obtained in the selected normalized feature space (Table 7.2), a decrease in the computed partition quality can be observed. Part of this loss can be related to the data normalization performed before feature selection which, as shown in Duda et al. (2001), can decrease considerably the separability between clusters making thus more difficult for the algorithm to identify proper groupings.

In case of the data sets 2d-4c containing gaussian noise, our algorithms using the criterion CritCF identified the 2 relevant attributes in 7 out of 10 test instances and delivered partitions with the number of clusters varying between 3 and 5. The poor average performance reported in Table 7.2 is due to the misleading behavior of our criterion on the remaining 3 test instances. The MNC-GA either selected more features or chose partitions with a larger number of clusters for these instances. This behavior also explains the high value of the standard deviation. However, analyzing the chromosomes in the last generation of the algorithm, we discovered individuals encoding the relevant features and the right number of clusters; their presence shows that the right configuration constitutes a local optimum in the landscape designed by the CritCF function. This distorted behavior of our criterion constitutes a drawback for global search methods; however, the experiments show that it is much reduced in the greedy context: the two versions of the Forward Selection algorithm added only one irrelevant feature in the case of these 3 instances determining only on one of them a higher number of clusters which justifies the high average value for k in Table 7.3.

Regarding the class of problems 2d-10c with gaussian noise, all algorithms selected the two relevant features for all problem instances as shown by the value of the F-Measure. The high variance of the number of clusters is due to a higher number of clusters chosen for two out of ten problem instances. Compared to the results presented in Table 7.1 for CritCF corresponding to the original relevant feature subset, a loss in performance is observed because of the normalized features. However, the results are still better than those obtained with Silhouette Width and Davies-Bouldin criteria in the original relevant feature space (see Table 7.1).

For the problems with 10 relevant features and gaussian noise, all three algorithms selected only relevant features but discarded some of them. For the problems with 10 clusters, this seems to be an advantage: the quality of the partitions derived in the reduced feature space is better, compared to the quality of the partitions derived in the feature space containing all relevant features (see Table 7.2 vs. Table 7.1).
Even if the F-Measure values in Figure 7.4 bottom corresponding to the criterion CritCF are lower compared to those reported in Handl and Knowles (2006a), which were obtained as described above, the ARI scores obtained by our methods are higher for some problem instances. For example, in case of the problems 10d-4c our methods obtain the lowest values for the F-measure but outperform most of the algorithms with regard to the ARI scores. Value 1 for the precision in Tables 7.2 and 7.3 shows that CritCF manages to remove all the gaussian noisy features. On the other hand, the recall values show that some relevant features are also discarded. All these observations suggest the hypotheses that some of the features known to be relevant actually may be redundant. This hypotheses is suggested as well by experiments reported in Handl and Knowles (2006a): when the procedure for automated extraction of the optimal solution from the Pareto front was used, the results concerning F-Measure were significantly worst while the ARI scores were relatively close.

Unfortunately, analyzing Figure 7.4 no definite winner can be identified: if an algorithm outperforms the others on one class of test instances, there exists an algorithm which beats it on a different problem. However, when comparing the methods, one must take into account that the methods based on CritCF function work completely unsupervised while the results reported for the other methods were obtained in a supervised manner as described above. Moreover, the methods using the function CritCF win with regard to time-complexity against the other methods presented in the experimental section. The first version of the Forward Selection algorithm required an average of 5,000 fitness evaluations for the problem instances with only 2 relevant features and about 17,000 fitness evaluations for the data sets with 10 relevant features. The Multi-Niche GA was run for only 10,000 fitness evaluations while the second version of the Forward Selection algorithm and all the methods from Handl and Knowles (2006a) (except the one based on entropy) employed more than 32,000 fitness evaluations. The quadratic complexity of the Silhouette Width criterion and the computational effort which must be payed for post-processing the Pareto front in Handl and Knowles (2006a) must also be considered.

Regarding the performance of our criterion on datasets with uniform noise, the same results as for the case of gaussian noise are obtained for the datasets with 10 relevant features. On the datasets with 2 relevant features and 10 clusters, the algorithm behaved impeccable on nine out of ten problem instances and selected one irrelevant feature along with the two relevant features for one problem instance. A significant decrease in performance can be observed in Figure 7.5 for the class of problems with uniform noise.
Table 7.4: Results for feature selection on real data sets. The first line for each data set presents the performance of k-Means on the initial data set with the correct number of clusters. The second line presents the performance of MNC-GA for unsupervised wrapper feature selection: the ARI score, the number of clusters k identified and the number of features m selected.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Alg.</th>
<th>ARI</th>
<th>k</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letters AB</td>
<td>kMeans</td>
<td>0.7524</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MNC-GA</td>
<td>0.7704</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Digits 56</td>
<td>k-Means</td>
<td>0.9475</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>MNC-GA</td>
<td>0.9347</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

consisting of 2 relevant features and 4 clusters. Only on two problem instances out of ten in this class, the algorithm selected correctly only the two relevant features. On six problem instances the algorithm selected the 2 relevant features but also added 1 noisy features which led to an increasing number of clusters in the selected partition. On the remaining two problem instances, the algorithm did not identify the relevant features. However, this class of problem instances seems to be the most difficult one even for the case of supervised clustering, when k-Means is run on the dataset consisting only of the relevant features and is supplied with the correct number of clusters; this may be one reason for the bad performance of the wrapper feature selection method: the clusters formed in the relevant feature space can not be correctly separated with k-Means, and the noisy uniform features mislead our criterion towards selecting smaller clusters.

For the Letters and Digits data sets we selected only 2 classes in order to interpret the results in terms of relevant features: classes A (789 data items) and B (766 data items) for Letters and classes 5 (376 data items) and 6 (377 data items) for Digits. For both test cases the MNC-GA was run 5 times each run consisting of 500 iterations; the best solution under CritCF criterion is reported. The results are presented in Table 7.4. For the Digits data set the best partition returned with MNC-GA accordingly to CritCF consisted of 3 clusters with one of the clusters consisting of only 5 data items; a k-Means run on the selected features with the number of clusters set to 2 returns an ARI score of 0.9476. The selected features are marked in gray in Figure 7.6.

As shown by the experimental results, CritCF can be used to search for both the most significant feature subspace and the best partition. The results reported are obtained on data sets containing more than 90 data items. However, for very small data sets, the
Figure 7.6: Results for MNC-GA on real data. The selected features are marked in gray.

between-cluster inertia and within-cluster inertia computed for optimal partitions with varying number of clusters do not follow the same distribution as the one illustrated in Figure 7.1 but a more linear one. For this reason, our function was unable to determine the right number of clusters on most of the test instances in class 2d-2c-100 and 10d-2c-100. For example, in case of the instances 10d-2c-100-no0 and 10d-2c-100-no8 (which consist of 118 and respectively 89 data items) CritCF was able to identify the optimum partition while for the rest of the test instances in the class 10d-2c-100 (which consist of less than 68 data items) CritCF biased the search process towards higher numbers of clusters. This phenomenon is common for a wide range of computational problems: there exist thresholds in the parameter space where certain characteristics of the problem change dramatically (phase transitions). Therefore, different algorithms may be appropriate for different instances of the problem. Experiments strongly suggest that the criterion we propose for unsupervised feature selection and clustering is appropriate for problem instances (data sets) with more than 70 data items.

7.5 Conclusions

A new clustering criterion was proposed, which is in most cases unbiased with respect to the number of clusters and which provides at the same time a ranking of partitions in feature subspaces of different cardinalities. Therefore, this criterion is able to provide guidance to any heuristic that simultaneously searches for both relevant feature subspaces and optimal partitions.
Chapter 8

Conclusion and future work

The thesis broke through the main challenges in cluster analysis, by addressing the following issues:

- dissimilarity measures,
- manifold learning as a preprocessing step prior to clustering,
- algorithms for clustering,
- solution validation,
- feature weighting and selection as methods to improve cluster analysis.

Evolutionary computation techniques applied in clustering were surveyed. New approaches based on Particle Swarm Optimization and Genetic algorithms were proposed to tackle some particular clustering problems. Some general-purpose clustering and feature selection algorithms were designed. An objective function that allows addressing unsupervised feature selection and clustering within a unified global optimization framework was proposed.

As future work, some particular directions with regard to the methods introduced across the thesis have been already mentioned: i.e. extensions of PSO-kMeans to the semi-supervised learning scenario, hybridizations between genetic algorithms and pseudo-boolean programming for the multi-objective graph clustering problem.

A natural path to be followed is to extend wrapper unsupervised feature selection towards co-clustering in order to identify homogenous groups of objects in different subspaces of the feature space; the problem is related to local metric learning. An
important application to be addressed in this context is the analysis of micro-array data.

Clustering and feature selection are difficult problems with a wide applicability. Evolutionary computation offers powerful optimization techniques. Under these premises, it is inherent that future studies will successfully approach real-world problems in diverse domains.

C. Domeniconi and M. Al-Razgan. Weighted cluster ensembles: Methods and analysis. *ACM Transactions on Knowledge Discovery from Data*, 2, 2009.

