EXTREMAL RESULTS CONCERNING THE GENERAL SUM-CONNECTIVITY INDEX IN SOME CLASSES OF CONNECTED GRAPHS

Ioan Tomescu

Faculty of Mathematics and Computer Science, University of Bucharest, Romania
ioan@fmi.unibuc.ro

Abstract

This paper surveys extremal properties of general sum-connectivity index $\chi_\alpha(G)$ in several classes of connected graphs of given order for some values of the parameter α: a) trees; b) connected unicyclic or bicyclic graphs; c) graphs of given connectivity.

Keywords: tree, diameter, pendant vertex, unicyclic graph, bicyclic graph, general sum-connectivity index, zeroth-order general Randić index, 2-connected graph, Jensen’s inequality.

2010 MSC: 05C90, 05C35.

1. INTRODUCTION

Let G be a simple graph having vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex $u \in V(G)$ is denoted $d(u)$. If $d(u) = 1$ then u is called pendant; a pendant edge is an edge containing a pendant vertex. The minimum degree of G is denoted $\delta(G)$ and the complement of G is \overline{G}. The girth of a graph G containing cycles is the length of a shortest cycle of G. The distance between vertices u and v of a connected graph, denoted by $d(u, v)$, is the length of a shortest path between them. The diameter of G is the maximum distance between vertices of G. If $A \subset V(G)$ and $u \in V(G)$, the distance between u and A is $d(u, A) = \min_{v \in A} d(u, v)$. If $x \in V(G)$, $G - x$ denotes the subgraph of G obtained by deleting x and its incident edges.

A similar notation is $G - xy$, where $xy \in E(G)$. $K_{p,q}$ will denote the complete bipartite graph, where the partite sets contain p and q vertices, respectively. Given a graph G, a subset S of $V(G)$ is said to be an independent set of G if every two vertices of S are not adjacent. The maximum number of vertices in an independent set of G is called the independence number of G and is denoted by $\alpha(G)$. $K_{1,n-1}$ and P_n will denote, respectively, the star and the path on n vertices. For two vertex-disjoint graphs G and H, the join $G + H$ is obtained by joining by edges each vertex of G to all vertices of H and the union $G \cup H$ has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G - S$ is disconnected or has only one vertex. A graph G is said to be k-connected if its connectivity is at least k. Similarly, the edge-connectivity of G,
written \(\kappa'(G) \), is the minimum size of a disconnecting set of edges. For every graph \(G \) we have \(\kappa(G) \leq \kappa'(G) \). Since a tree on \(n \) vertices is a bipartite graph, at least one partite set, which is an independent set, has at least \(n/2 \) vertices, which implies that for any tree \(T \) we have \(\alpha(T) \geq \lceil n/2 \rceil \) and this bound is reached for paths. Also, \(\alpha(T) \leq n - 1 \) and the equality holds only for the star graph. For every \(n \geq 2 \) and \(n/2 \leq s \leq n - 1 \) the spur \(SP_{n,s} \) [4] is a tree consisting of \(2s - n + 1 \) edges and \(n - s - 1 \) paths of length 2 having a common endvertex; in other words, it is obtained from a star \(K_{1,s} \) by attaching a pendant edge to \(n - s - 1 \) pendant vertices of \(K_{1,s} \). We have \(\alpha(SP_{n,s}) = s \). A bistar of order \(n \), denoted by \(BS(p,q) \), consists of two vertex disjoint stars, \(K_{1,p} \) and \(K_{1,q} \), where \(p + q = n - 2 \), and a new edge joining the centers of these stars. For \(n \geq 3 \) and \(0 \leq k \leq n - 3 \), let \(C_{n-k,k} \) denote the unicyclic graph of order \(n \) consisting of a cycle \(C_{n-k} \) and \(k \) pendant edges attached to a unique vertex of \(C_{n-k} \). For other notations in graph theory, we refer [1].

The general sum-connectivity index of graphs was proposed by Zhou and Trinajstić [18]. It is denoted by \(\chi_\alpha(G) \) and defined as

\[
\chi_\alpha(G) = \sum_{uv \in E(G)} (d(u) + d(v))^\alpha,
\]

where \(\alpha \) is a real number. The sum-connectivity index, previously proposed by the same authors [17] is \(\chi_{-1/2}(G) \). A particular case of the general sum-connectivity index is the harmonic index, denoted by \(H(G) \) and defined as

\[
H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)} = 2\chi_{-1}(G).
\]

The zeroth-order general Randić index, denoted by \(^0R_\alpha(G) \) is defined as

\[
^0R_\alpha(G) = \sum_{u \in V(G)} d(u)^\alpha,
\]

where \(\alpha \) is a real number. For \(\alpha = 2 \) this index is also known as first Zagreb index (see [7]).

These graph invariants, that are useful for chemical purposes, were named topological indices, or, less confusing, molecular structure-descriptors. Their main use is for designing so-called quantitative structure-property relations, QSPR and quantitative structure-activity relations, QSAR. In this context structure means molecular stucture, property some physical or chemical property, and activity some pharmacologic, biologic, toxicologic, or similar property [7].

In the next sections we shall present some results about graphs having maximum or minimum general sum-connectivity index in various classes of connected graphs for some values of the parameter \(\alpha \).
2. GENERAL SUM-CONNECTIVITY INDEX FOR TREES

In the paper proposing new index $\chi_\alpha(G)$ [18] the following result was deduced:

Theorem 2.1. Let T be a tree with $n \geq 4$ vertices. If $\alpha > 0$, then:

$$2 \cdot 3^n + (n-3)4^n \leq \chi_\alpha(T) \leq (n-1)n^n$$

with left (right, respectively) equality if and only if $T = P_n$ ($T = K_{1,n-1}$, respectively). If $\alpha < 0$, then the above inequalities on $\chi_\alpha(T)$ are reversed, where the upper bound holds for $\alpha \geq 1 - \frac{\log 2}{\log(4/3)} \approx -1.4094$.

The maximum value for the general sum-connectivity indices of n-vertex trees and the corresponding extremal trees for $\alpha < \gamma_0$, where $\gamma_0 \approx -4.3586$ is the unique root of the equation $(4^x - 5^x)/(5^x - 6^x) = 3$ has been deduced in [6]:

Theorem 2.2. In the set of n-vertex trees T with $n \geq 4$, if $\alpha < \gamma_0$ maximum of $\chi_\alpha(T)$ if reached if and only if T consists of $(n-1)/2$ copies of P_3 having a common endvertex if n is odd and of $(n-4)/2$ copies of P_3 and a copy of P_4 having a common endvertex if n is even.

For every integers n, p with $2 \leq p \leq n - 1$, let $S_{n,p}$ denote the tree with p pendant vertices formed by attaching $p-1$ pendant vertices to an endvertex of the path P_{n-p+1}. In particular $S_{n,2} = P_n$ and $S_{n,n-1} = K_{1,n-1}$. Minimum value of $\chi_\alpha(T)$ for trees of given diameter and $-1 \leq \alpha < 0$ has been deduced in [11] using graph transformations and some parametric inequalities:

Theorem 2.3. For every $-1 \leq \alpha < 0$ in the set of trees T having order $n \geq 3$ and diameter equal to d ($2 \leq d \leq n - 1$), $\chi_\alpha(T)$ is minimum if and only if $T = S_{n,n-d+1}$.

An ordering of the trees T having minimum $\chi_\alpha(T)$ was also obtained in [11]:

Theorem 2.4. For every $-1 \leq \alpha < 0$ there exists $n_0(\alpha) > 0$ such that for every $n \geq n_0(\alpha)$ the trees T having smallest $\chi_\alpha(T)$ are $K_{1,n-1}, BS(n-3, 1), BS(n-4, 2), S_{n,n-3}$ and $BS(n-5, 3)$ (in this order). Also we have $n_0(-1) = 16$.

If we restrict ourselves to the set of trees with given order and number of pendant vertices, we have the following result [11]:

Theorem 2.5. Let T be a tree with $n \geq 5$ vertices and p pendant vertices, where $3 \leq p \leq n-2$ and $-1 \leq \alpha < 0$. Then $\chi_\alpha(T)$ is minimum if and only if $T = S_{n,p}$.

The following theorem characterizes trees T of given order and independence number with maximum $\chi_\alpha(T)$ for $\alpha > 1$ [13]:

Theorem 2.6. Let $n \geq 2$, $n/2 \leq s \leq n-1$ and T be a tree of order n with independence number s. Then for every $\alpha > 1$, both $\chi_\alpha(T)$ and $R_\alpha(T)$ are maximum if and only if $T = S_{n,s}$, the spur graph.
A connected unicyclic graph of order \(n \) has a unique cycle and \(n \) edges; it can be obtained from a tree \(T \) of order \(n \) by adding a new edge between two nonadjacent vertices of \(T \). Similarly, a connected bicyclic graph has two linear independent cycles. It has \(n + 1 \) edges and can be deduced from a tree \(T \) of order \(n \) by adding two edges between two pairs of nonadjacent vertices of \(T \).

The first results about connected unicyclic graphs of given order having minimum general sum-connectivity index were deduced in [5]. In order to show these results let \(S_n(a, b, c) \) be the \(n \)-vertex graph obtained by attaching \(a - 2 \), \(b - 2 \) and \(c - 2 \) pendant vertices to the three vertices of a triangle, respectively, where \(a + b + c = n + 3 \) and \(a \geq b \geq c \geq 2 \).

Theorem 3.1. Among the set of \(n \)-vertex unicyclic graphs with \(n \geq 5 \), for \(\alpha > 0 \), cycle \(C_n \) is the unique graph with the minimum general sum-connectivity index and for \(-1 \leq \alpha < 0\), \(S_n(n - 1, 2, 2) \) and \(S_n(n - 2, 3, 2) \) are respectively the unique graphs with the minimum and the second minimum general sum-connectivity indices.

Note that \(S_n(n - 1, 2, 2) \) consists of a triangle and \(n - 3 \) pendant vertices incident to the same vertex of this triangle. This extremal graph has girth equal to 3. If \(G \) has girth \(k \geq 4 \) extremal graphs are given by the next theorem [12]:

Theorem 3.2. Let \(G \) be a connected unicyclic graph of order \(n \) and girth \(k \), where \(n \geq k \geq 4 \) and \(-1 \leq \alpha < 0\). Then \(\chi_\alpha(G) \geq \chi_\alpha(C_{k,n-k}) \), and equality holds if and only if \(G = C_{k,n-k} \), where \(C_{k,n-k} \) denotes the cycle \(C_k \) with \(n-k \) pendant edges attached to a single vertex of \(C_k \).

Let \(A(n, k) \) denote the set of unicyclic graphs of order \(n \) consisting of \(C_k \), \(n - k - 1 \) pendant edges incident to a vertex \(x \in V(C_k) \) and one pendant edge incident to a vertex \(y \in V(C_k) \), such that \(d(x, y) \geq 2 \). In the set of connected unicyclic graphs of order \(n \) and girth \(k \), where \(n \geq k + 2 \geq 6 \) and \(-1 \leq \alpha < 0\) the graphs having the second minimum general sum-connectivity index are graphs in \(A(n, k) \) [12].

A characterization of connected unicyclic graphs of order \(n \) having \(k \) pendant vertices and minimum general sum-connectivity index was done for \(-1 \leq \alpha < 0\) in [14]:

Theorem 3.3. Let \(G \) be a connected unicyclic graph of order \(n \geq 3 \) with \(k \) pendant vertices \((0 \leq k \leq n - 3)\). If \(-1 \leq \alpha < 0\) then \(\chi_\alpha(G) \geq f(n, k) = k(k+3)\alpha + 2(k+4)\alpha^2 + (n-k-2)\alpha^3 \). Equality holds if and only if \(G = C_{n-k,k} \), the graph consisting of \(C_{n-k} \) and \(k \) pendant edges incident to a unique vertex of this cycle.

Since function \(f(n, k) \) is increasing in \(k \), we get:

Corollary 3.1. If \(-1 \leq \alpha < 0\), in the class of unicyclic connected graphs \(G \) of order \(n \), \(\chi_\alpha(G) \) is minimum if and only if \(G = C_{3,n-3} \).
property also stated by Theorem 3.1. The extremal connected bicyclic graphs of order \(n \geq 1 \) were deduced in [9] and [10] as follows:

Theorem 3.4. The unique graph with the largest general sum-connectivity index for \(\alpha \geq 1 \) among all connected bicyclic graphs of order \(n \), consists of two triangles having a common edge and other \(n - 4 \) pendant edges incident to a vertex of degree three of this graph.

Theorem 3.5. The set of graphs which minimize the general sum-connectivity index in the set of the connected bicyclic graphs of order \(n \) for \(\alpha \geq 1 \) is \(A \cup B \), where \(A \) is the set of graphs consisting of two vertex disjoint cycles \(C_p \) and \(C_q \), joined by a path \(P_r \) and \(B \) the set of those graphs formed by two cycles \(C_{p+r} \) and \(C_{q+r} \), having in common a path \(P_r \), provided \(r \geq 2 \).

4. General Sum-Connectivity Index for \(K \)-Connected Graphs

First we consider the minimum \(\chi_\alpha(G) \) in the class of graphs \(G \) of order \(n \geq 3 \) and minimum degree \(\delta(G) \geq 2 \), when \(-1 \leq \alpha < \alpha_0 \), where \(\alpha_0 \approx -0.866995 \) is the unique root of the equation \(4(4^x - 5^x) = 6^x \). A similar investigation was done when graphs \(G \) are triangle-free for \(-1 \leq \alpha < \beta_0 \), where \(\beta_0 = \frac{\ln 6}{\ln 4} \approx -0.81706 \). The proofs of the next two theorems use induction, several approximations of exponential functions by polynomials using Taylor formula and some properties of convex functions, like Jensen’s inequality [15].

Theorem 4.1. Let \(G \) be a graph of order \(n \geq 3 \) with \(\delta(G) \geq 2 \). If \(-1 \leq \alpha < \alpha_0 \) then \(\chi_\alpha(G) \geq f(n) = 2(n - 2)(n + 1)^\alpha + 2^\alpha(n - 1)^\alpha \). Equality holds if and only if \(G = K_2 + K_{n-2} \).

Theorem 4.2. Let \(-1 \leq \alpha < \beta_0 \) and \(G \) be a triangle-free graph of order \(n \geq 4 \) with \(\delta(G) \geq 2 \). Then \(\chi_\alpha(G) \geq g(n) = 2(n - 2)n^\alpha \) and equality is reached if and only if \(G = K_{2,n-2} \).

Since all 2-connected graphs \(G \) have \(\delta(G) \geq 2 \) and both \(K_2 + K_{n-2} \) and \(K_{2,n-2} \) are 2-connected, we deduce the following corollaries.

Corollary 4.1. If \(G \) is a 2-connected graph of order \(n \geq 3 \) and \(-1 \leq \alpha < \alpha_0 \), then \(\chi_\alpha(G) \geq f(n) \). The extremal graph is \(K_2 + K_{n-2} \).

Corollary 4.2. Let \(G \) be a triangle-free 2-connected graph of order \(n \geq 4 \) and \(-1 \leq \alpha < \beta_0 \). We have \(\chi_\alpha(G) \geq g(n) \) and equality holds if and only if \(G = K_{2,n-2} \).

We proposed the following conjecture [15]:

Let \(n, k \in \mathbb{N}, n \geq 4, k \leq n/2 \) and \(-1 \leq \alpha < \beta_0 \). Then for any triangle-free graph of order \(n \) with \(\delta(G) \geq k \geq 2 \) we have \(\chi_\alpha(G) \geq k(n - k)n^\alpha \) with equality if and only if \(G = K_{k,n-k} \).
This property is true for $\alpha = -1$ [2] and for $k = 2$ and $-1 \leq \alpha < \beta_0$ by Theorem 4.2. If the conjecture is true, then the property also holds for k-connected graphs. The following theorem shows extremal graph G of order n with $\kappa(G) = k$ which maximizes $\chi_\alpha(G)$ for $\alpha \geq 1$ [16].

Theorem 4.3. Let G be an n-vertex graph, $n \geq 3$, with vertex connectivity k, $1 \leq k \leq n - 1$ and $\alpha \geq 1$. Then $0R_\alpha(G)$ and $\chi_\alpha(G)$ are maximum if and only if $G = K_k + (K_1 \cup K_{n-k-1})$.

Note that the graph $K_k + (K_1 \cup K_{n-k-1})$ is the graph of order n obtained by joining by edges k vertices of K_{n-k-1} to a new vertex. Since for every graph G, $\kappa(G) \leq \kappa'(G)$ holds, we have [16]:

Corollary 4.3. Let G be an n-vertex graph, $n \geq 3$, with edge connectivity k, $1 \leq k \leq n - 1$ and $\alpha \geq 1$. Then $0R_\alpha(G)$ and $\chi_\alpha(G)$ are maximum if and only if $G = K_k + (K_1 \cup K_{n-k-1})$.

For $\alpha > 0$ the 2-connected graph having minimum $\chi_\alpha(G)$ is the cycle C_n [16]:

Theorem 4.4. Let G be a 2-(connected or edge-connected) graph with $n \geq 3$ vertices. Then for $\alpha > 0$, $0R_\alpha(G)$ and $\chi_\alpha(G)$ are minimum if and only if $G = C_n$.

References

