INTEGRAL PROPERTIES OF A CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Adriana Cătaş, Emilia Borșa
Department of Mathematics and Computer Sciences, University of Oradea, Romania
acatas@gmail.com, eborsa@uoradea.ro

Abstract
In this paper integral properties of a certain class of analytic functions with negative coefficients are studied. This class is defined using a generalized Sălăgean operator. The obtained results are sharp and they improve known results.

Keywords: generalized Sălăgean operator, extremal functions.

2010 MSC: 30C45.

Presented at CAIM 2011.

1. INTRODUCTION

We will denote by \(\mathcal{H}(U) \) the set of analytic functions in the unit disc \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) and for \(a \in \mathbb{C}, n \in \mathbb{N}^* \) we consider the following class

\[A_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_{n+1}z^{n+1} + \ldots \}. \]

Let \(\mathbb{N} \) denote the set of nonnegative integers \(\{0, 1, \ldots, n, \ldots\} \), \(\mathbb{N}^* = \mathbb{N} \setminus \{0\} \) and let \(\mathbb{N}_j, j \in \mathbb{N}^* \), be the class of functions of the form

\[f(z) = z - \sum_{k=j+1}^{\infty} a_k z^k, \quad a_k \geq 0, \ k \in \mathbb{N}, \ k \geq j+1, \quad (1) \]

that are analytic in the open unit disc.

For a function \(f \) belonging to the class \(A_n \), F.M. Al-Oboudi defined, in paper [1], the following differential operator:

\[
D^0 f(z) = f(z) \quad \quad D^1 f(z) = D_\lambda f(z) = (1 - \lambda)f(z) + \lambda z f'(z) \quad \quad D^m f(z) = D_\lambda (D^{m-1}_\lambda f(z)), \quad \lambda > 0.
\]

When \(\lambda = 1 \), we get the Sălăgean operator [5].

For a function \(f \in \mathbb{N}_j \) we have

\[
D^m f(z) = z - \sum_{k=j+1}^{\infty} c_k(m, \lambda) a_\lambda z^k
\]
where
\[c_k(m, \lambda) = [1 + (k - 1) \lambda]^{m}, \quad \lambda > 0, \; m = 0, 1, 2, \ldots \] (2)

Definition 1.1. [4] Let \(\alpha, \gamma \in [0, 1), \; m \in \mathbb{N}, \; j \in \mathbb{N}^* \). A function \(f \) belonging to \(\mathcal{N}_j \) is said to be in class \(\mathcal{T}_j(m, \gamma, \alpha, \lambda) \) if and only if
\[R \frac{D^{m+1}_\lambda f(z)}{(1 - \gamma)D^{m+1}_\lambda f(z) + \gamma D^{m+1}_\lambda f(z)} > \alpha, \quad z \in U. \] (3)

Remark 1.1. The class \(\mathcal{T}_j(m, \gamma, \alpha, \lambda) \) contains the following subclasses
i) \(\mathcal{T}_1(0, 0, \alpha, 1) = \mathcal{T}^*(\alpha) \) and \(\mathcal{T}_1(1, 0, \alpha, 1) = C(\alpha) \) defined and studied by Silverman [11] (these classes are the class of starlike functions of order \(\alpha \) with negative coefficients and the class of convex functions of order \(\alpha \) with negative coefficients respectively);
ii) \(\mathcal{T}_j(0, 0, \alpha, 1) \) and \(\mathcal{T}_j(1, 0, \alpha, 1) \) studied by Chatterjea [5] and Srivastava et al. [12];
iii) \(\mathcal{T}_1(0, \gamma, \alpha, 1) = \mathcal{T}(\gamma, \alpha) \) and \(\mathcal{T}_1(1, \gamma, \alpha, 1) = C(\gamma, \alpha) \) studied by Altintaş and Owa [2]

The next characterization theorem of the class \(\mathcal{T}_j(m, \gamma, \alpha, \lambda) \) was given in [4].

Theorem 1.1. [4] Let the function \(f \) be defined by (1). Then \(f \) belongs to the class \(\mathcal{T}_j(m, \gamma, \alpha, \lambda) \) if and only if
\[\sum_{k=j+1}^{\infty} c_k(m, \lambda)[1 + (k - 1) \lambda - \alpha[1 + \gamma(k - 1) \lambda]]a_k \leq 1 - \alpha \] (4)
where \(c_k(m, \lambda) \) is given in (2).

The result is sharp and the extremal functions are
\[f_k(z) = z - \frac{1 - \alpha}{c_k(m, \lambda)[1 + (k - 1) \lambda - \alpha[1 + \gamma(k - 1) \lambda]]} \cdot z^k \] (5)
with \(k \geq j + 1 \).

Let \(I_c : \mathcal{N}_j \to \mathcal{N}_j, \; j \in \mathbb{N}^* \) be the integral operator defined by \(F = I_c(f) \), where \(c \in (-1, \infty) \), \(f \in \mathcal{N}_j \) and
\[F(z) = I_c(f)(z) = \frac{c + 1}{z} \int_0^z t^{-1} f(t) dt. \] (6)

From the representation (6) it follows that
\[F(z) = I_c(f)(z) = z - \sum_{k=j+1}^{\infty} b_k z^k \] (7)
where
\[b_k = \left(\frac{c + 1}{c + k} \right) a_k. \] (8)
2. **INTEGRAL PROPERTIES OF THE CLASS**
\(\mathcal{T}_j(M, \gamma, \alpha, \lambda) \) **CONCERNING PARAMETER** \(\alpha \)

In this section we will find the parameter \(\beta \) such that \(F \in \mathcal{T}_j(m, \gamma, \beta, \lambda) \) for \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda) \) and \(F = I_c(f) \).

Theorem 2.1. Let \(m \in \mathbb{N} \), \(j \in \mathbb{N}^* \), \(\alpha, \gamma \in [0, 1) \) and let \(c \in (-1, \infty) \).

If \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda) \) and \(F = I_c(f) \), then \(F \in \mathcal{T}_j(m, \gamma, \beta, \lambda) \), where

\[
\beta = \beta(\gamma, \alpha, \lambda, c; j + 1) = 1 - \frac{(c + 1)(1 - \alpha)(1 - \gamma)}{\lambda((1 - \alpha \gamma)(c + j + 1) - \gamma(c + 1)(1 - \alpha)) + 1 - \alpha}
\]

and \(\alpha < \beta(\gamma, \alpha, \lambda, c; j + 1) < 1 \). The result is sharp.

Proof. From Theorem 1.1 and from (7) we have \(F \in \mathcal{T}_j(m, \gamma, \beta, \lambda) \) if and only if

\[
\sum_{k=j+1}^{\infty} c_k(m, \lambda)[1 + (k - 1)\lambda - \beta[1 + \gamma(k - 1)\lambda]](c + 1)\frac{a_k}{(c + k)(1 - \beta)} \leq 1. \tag{10}
\]

We find the largest \(\beta \) such that (10) holds. We note that the inequalities

\[
\frac{1 + (k - 1)\lambda - \beta[1 + \gamma(k - 1)\lambda]}{(c + k)(1 - \beta)} \leq 1 - \frac{(c + 1)(1 - \alpha)}{1 - \alpha}, \quad k \geq j + 1 \tag{11}
\]

imply (10), because \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda) \) and it satisfies (4). But the inequalities (11) are equivalent to

\[
\beta A(\gamma, \alpha, \lambda, c; k) \leq B(\gamma, \alpha, \lambda, c; k) \tag{12}
\]

where

\[
A(\gamma, \alpha, \lambda, c; k) = \lambda(k - 1)((1 - \alpha \gamma)(c + k) - \gamma(c + 1)(1 - \alpha)) + (1 - \alpha)(k - 1)
\]

and

\[
B(\gamma, \alpha, \lambda, c; k) = A(\gamma, \alpha, \lambda, c; k) - \lambda(k - 1)(c + 1)(1 - \alpha)(1 - \gamma). \tag{13}
\]

Since \(1 - \alpha \gamma > 1 - \alpha \) and \((c + k) > \gamma(c + 1) \), we have \(A(\gamma, \alpha, \lambda, c; k) > 0 \) and from (12) we deduce

\[
\beta \leq \frac{B(\gamma, \alpha, \lambda, c; k)}{A(\gamma, \alpha, \lambda, c; k)}, \quad k \geq j + 1. \tag{14}
\]

We define

\[
\beta(\gamma, \alpha, \lambda, c; k) := \frac{B(\gamma, \alpha, \lambda, c; k)}{A(\gamma, \alpha, \lambda, c; k)}. \tag{15}
\]
We show now that $\beta(\gamma, \alpha, \lambda, c; k)$ is an increasing function of k, $k \geq j + 1$. Indeed,

$$
\beta(\gamma, \alpha, \lambda, c; k) = 1 - \frac{\lambda(k - 1)(c + 1)(1 - \alpha)(1 - \gamma)}{A(\gamma, \alpha, \lambda, c; k)}
$$

$$
= 1 - \frac{\lambda(c + 1)(1 - \alpha)(1 - \gamma)}{E(\gamma, \alpha, \lambda, c; k)}
$$

where

$$
E(\gamma, \alpha, \lambda, c; k) = \frac{A(\gamma, \alpha, \lambda, c; k)}{k - 1}
$$

and $\beta(\gamma, \alpha, \lambda, c; k)$ increases when k increases if and only if $E(\gamma, \alpha, \lambda, c; k)$ is also an increasing function of k.

We define the function

$$
g(x) := E(\gamma, \alpha, \lambda, c; x), \quad x \in [j + 1, \infty) \subset [2, \infty)
$$

$$
g(x) = \frac{\lambda((1 - \alpha)(c + x) - \gamma(c + 1)(1 - \alpha)] + 1 - \alpha. \quad (16)
$$

One obtains

$$
g'(x) = \lambda(1 - \alpha) \geq 0, \quad \forall \ x \in [j + 1, \infty).
$$

We have obtained $g(j + 1) \leq g(k), \ k \geq j + 1$ and this implies

$$
\beta := \beta(\gamma, \alpha, \lambda, c; j + 1) \leq \beta(\gamma, \alpha, \lambda, c; k), \quad k \geq j + 1. \quad (17)
$$

$$
\beta = 1 - \frac{\lambda(c + 1)(1 - \alpha)(1 - \gamma)}{\lambda[(1 - \alpha)(c + j + 1) - \gamma(c + 1)(1 - \alpha)] + 1 - \alpha.
$$

The result is sharp because

$$
J_c(f_\alpha) = f_\beta \quad (18)
$$

where

$$
f_\alpha(z) = z - \frac{1 - \alpha}{(1 + j\lambda)[1 + j\lambda - \alpha(1 + j\lambda)]} \cdot z^{j+1}, \quad (19)
$$

$$
f_\beta(z) = z - \frac{1 - \beta}{(1 + j\lambda)[1 + j\lambda - \beta(1 + j\lambda)]} \cdot z^{j+1} \quad (20)
$$

are the extremal functions of $\mathcal{T}_j(m, \gamma, \alpha, \lambda)$ and $\mathcal{T}_j(m, \gamma, \beta, \lambda)$ respectively and $\beta = \beta(\gamma, \alpha, \lambda, \lambda, c; j + 1)$.

Indeed, we have

$$
J_c(f_\alpha)(z) = z - \frac{(1 - \alpha)(c + 1)}{(1 + j\lambda)[c + j + 1][1 + j\lambda - \alpha(1 + j\lambda)]} \cdot z^{j+1}.
$$

If we use the notations

$$
A := A(\gamma, \alpha, \lambda, c; j + 1) \quad \text{and} \quad B := B(\gamma, \alpha, \lambda, c; j + 1)
$$
one obtains
\[
\frac{1 - \beta}{(j\lambda + 1)(1 - \beta\gamma) - \beta(1 - \gamma)} = \frac{(1 - \alpha)(c + 1)}{(c + j + 1)[1 + \lambda j - \alpha(1 + \lambda j\gamma)]}
\]
and this implies (18).

From the relation \(\beta = 1 - \frac{j\lambda(c + 1)(1 - \alpha)(1 - \gamma)}{A}\) and because \(A > 0\), we deduce \(\beta < 1\). We also have \(\beta > \alpha\). Indeed,
\[
\beta - \alpha > \frac{(1 - \alpha)(1 - \alpha\gamma)j}{\lambda(1 - \alpha\gamma) + (c + 1)(1 - \gamma)} > 0.
\]

3. INTEGRAL PROPERTIES CONCERNING THE PARAMETER \(\gamma\)

In this section we will find the parameter \(\eta^*\) such that \(F \in \mathcal{T}_j(m, \eta^*, \alpha, \lambda)\) for \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda)\) and \(F = I_c(f)\).

Theorem 3.1. Let \(m \in \mathbb{N}\), \(j \in \mathbb{N}^+, \alpha, \gamma \in (0, 1), \lambda > 0\) and let \(c\) a real number such that
\[
c > \max \left\{ -1, \frac{\lambda(j + 1)(1 - \alpha\gamma) + 1 - \alpha - \lambda}{\alpha\gamma\lambda} \right\}. \tag{21}
\]
If \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda)\) and \(F = I_c(f)\) then \(F \in \mathcal{T}_j(m, \eta^*, \alpha, \lambda)\), where
\[
\eta^* = \frac{\lambda(c + 1) - (c + j + 1)(1 - \alpha\gamma)\lambda - (1 - \alpha)}{\lambda\alpha(c + 1)} \tag{22}
\]
and \(0 < \eta^* < \gamma\). The result is sharp.

Proof. From Theorem 1.1 and from (7) we have \(F \in \mathcal{T}_j(m, \eta, \alpha, \lambda)\) if and only if
\[
\sum_{k=j+1}^{\infty} c_k(m, \lambda)[1 + (k - 1)\lambda - \alpha[1 + \eta(k - 1)\lambda]](c + 1) \cdot a_k \leq 1. \tag{23}
\]

We find the smallest \(\eta\) such that (23) holds. We note that the inequalities
\[
\frac{(1 + (k - 1)\lambda - \alpha[1 + \eta(k - 1)\lambda])(c + 1)}{c + k} \leq 1 + (k - 1)\lambda - \alpha[1 + \gamma(k - 1)\lambda], \quad k \geq j + 1
\]
imply (23), because \(f \in \mathcal{T}_j(m, \gamma, \alpha, \lambda)\) and it satisfies (4). But the inequalities (24) can be rewritten for all \(k \geq j + 1\)
\[
[(k - 1)(1 - \alpha\eta)\lambda + 1 - \alpha](c + 1) \leq [(k - 1)(1 - \alpha\gamma)\lambda + 1 - \alpha](c + k)
\]
or
\[\eta \geq \frac{\lambda(c+1) - (c+k)(1 - a\gamma)\lambda - (1 - \alpha)}{\lambda a(c+1)}, \quad k \geq j + 1. \]

(25)

If we let
\[h(\gamma, \alpha, \lambda; c) = \frac{\lambda(c+1) - (c+k)(1 - a\gamma)\lambda - (1 - \alpha)}{\lambda a(c+1)}, \quad k \geq j + 1 \]

(26)

then function h can be rewritten in the form
\[h(\gamma, \alpha, \lambda; c) = \left[1 - \frac{g(k) - \lambda(c+1)(1 - \gamma)}{\lambda a\gamma(c+1)} \right] \cdot \gamma \]

where the function g is given in (16).

Since
\[g(k) - \lambda(c+1)(1 - \gamma) \] is an increasing function of k, we deduce that $h(\gamma, \alpha, \lambda; c; k)$ is a decreasing function of k, $(k \geq j + 1)$ and $h(\gamma, \alpha, \lambda; c; k) \leq h(\gamma, \alpha, \lambda; j + 1)$. For $k = j + 1$ one obtains
\[\eta^* = \left[1 - \frac{\lambda j(1 - a\gamma) + 1 - \alpha}{\lambda a\gamma(c+1)} \right] \cdot \gamma \]
and for c given in (21) we can see that $0 < \eta^* < \gamma$.

In order to prove that the result is sharp we show that
\[I_c(f_\gamma) = f_{\eta^*}, \]

(27)

where
\[f_\gamma(z) = z - \frac{1 - \alpha}{(1 + j\lambda)^m[1 + j\lambda - a(1 + j\lambda\gamma)]} \cdot z^{j+1} \]

(28)

and
\[f_{\eta^*}(z) = z - \frac{1 - \alpha}{(1 + j\lambda)^m[1 + j\lambda - a(1 + j\lambda\eta^*)]} \cdot z^{j+1} \]

(29)

are the extremal functions of $T_j(m, \gamma, \alpha, \lambda)$ and $T_j(m, \eta^*, \alpha, \lambda)$ respectively and $\eta^* = h(\gamma, \alpha, \lambda; c; j + 1)$.

Indeed, we have
\[I_c(f_\gamma)(z) = z - \frac{(c+1)(1 - \alpha)}{(1 + j\lambda)^m(c+j+1)[1 + j\lambda - a(1 + j\lambda\gamma)]} \cdot z^{j+1}. \]

One obtains
\[\frac{1}{1 + j\lambda - a(1 + j\lambda\eta^*)} = \frac{(c+1)}{(c+1)} \frac{(c+1)(1 - \alpha) + (c + j + 1)(1 - a\gamma)\lambda j - (1 - \alpha)j}{(c+1)} \]
\[= \frac{(c+1)}{(c+1)[1 + j\lambda - a(1 + j\lambda\gamma)]} \]
and this implies (27).
Integral properties of a certain class of analytic functions with negative coefficients

References

