AN AUTOMATON-BASED FORMALISM FOR COOPERATIVE AUGMENTED REALITY SYSTEMS

Felix G. Hamza-Lup1 and Ferucio Laurențiu Țiplea2

1Department of Computer Science, Armstrong Atlantic State University, Savannah, Georgia 31419-1997, USA, Email: felix@cs.armstrong.edu
2Department of Computer Science, “Al.I.Cuza” University, Iasi, Romania, Email: fltiplea@mail.dntis.ro

Abstract

The aim of the paper is to propose an application of the automata theory in modeling and analyzing Cooperative Augmented Reality Systems (CARSs). We motivate it by two examples, one of them applying Augmented Reality (AR) paradigms to medical training, and the other one to telerobotic manipulation. The model is based on automata theory and objectives are formulated as reachability-like decision problems. We show that reachability, which plays an important role in analyzing CARSs, is undecidable in general, but it is NP-complete for finite-domain CARSs. The relationship with Petri nets, as models of distributed and concurrent systems, is also provided.

1. Introduction

Augmented Reality (AR) systems [11] use computers and specific visualization devices to overlay virtual information in the real world. They enhance the perception of, and the interaction with the real world. Visually, the real scene a person sees is augmented with computer-generated objects that are placed (registered) in the real scene in such a way that the information they carry appears in the correct location with respect to the real objects they augment.

Several AR systems were proposed in the mid ’90s as tools to assist in different fields such as medicine [5], complex assembly labeling [4], and construction labeling [18]. With advances in computer graphics, networking, and hardware (i.e., 3D displays, haptic devices etc.) the research community has shifted attention to distributed environments that use extensively the AR paradigm [1, 14]. Furthermore, a Cooperative Augmented Reality System (CARS) can substantially facilitate experts’ interactions, especially during quick-response conditions such as medical emergencies [15], and has the potential to provide efficient training. An important aspect regarding these systems is that augmentation can occur for multiple sensory modalities (haptic, visual, auditive).

The main challenge encountered in designing CARSs is the dynamic nature of the environment. The attributes of the virtual components of the scene are changing as an effect of the
participants’ interactions. These interactions and information exchanges generate a state referred to as the dynamic shared state [16] that has to be maintained consistent at all sites for all participants and in the presence of inevitable network latency and jitter. In spite of the fact that several problems inherent in such environments have been investigated over the years, no generally accepted formalism allowing an in-depth reasoning for such systems has been developed.

The aim of this paper is to propose a formal model for CARSs. We motivate it by two examples, one of them applying AR paradigms to medical training, and the other one to telerobotic manipulation. The model is based on automata theory and objectives are formulated as reachability-like decision problems. We show that reachability, which plays an important role in analyzing CARSs, is undecidable in general, but is NP-complete for finite-domain CARSs. A relationship with Petri nets, as models of distributed and concurrent systems, is also provided.

The paper is organized into six sections. Section 2 describes two complex CARSs as motivating examples for this work. In Section 3 we raise the abstraction level by introducing the main components of a formal model intended to capture the behavior of CARSs. In Section 4, the model is applied to the first CARS example, an AR-based Endotracheal Intubation training system. A few basic properties of our model are studied in Section 5. We end the paper with conclusions followed by near future work.

2. Examples of Cooperative Augmented Reality Systems (CARSs)

The complexity of modeling and reasoning about systems that involve cooperation between tasks and data distribution plays an important role in CARSs development.

In the following paragraphs, two examples of CARSs are briefly discussed. These examples will be used to motivate our formal model and to exemplify the main problems one encounters when designing and planning the development of such complex systems.

2.1. AR Systems for Training Endo-Tracheal Intubation

Endo-tracheal Intubation (ETI) is a frequent medical procedure encountered in Emergency Rooms (ER). For a successful intubation, a trained physician must insert an endo-tracheal tube through the patient’s mouth or nose into the trachea to assure lungs ventilation. The most important reason for training clinicians in ETI is the inherent difficulty associated with the procedure. In case of severe trauma patients, emergency airway management is classified as a major cause of pre-hospital death trauma by the American Heart Association [17]. Many anesthesiologist believe that the main cause of failure in applying the ETI is the difficulty for the clinician to visualize the vocal cords [3].

A common training methodology is based on the Human Patient Simulator (HPS) [8], a plastic mannequin used as a severe trauma victim. A medical student in a practice ER is responsible for stabilizing the simulated patient. One of the first procedures the student must perform
is the ETI. The standard training procedure is executed locally (i.e., both the student and his/her’s instructor are at the same location).

Augmenting the real environment with virtual 3D models that participants may interact with remotely has the potential to enhance training effectiveness allowing participants to visualize and better understand various complex medical procedures with frequent exposure to the techniques and without the cost of traveling. In [6] the ETI procedure based on the HPS system was enhanced using AR paradigms (i.e., virtual models superimposed dynamically on the HPS), allowing the student to visualize the internal anatomy (i.e., trachea and lungs). During the intubation procedure the instructors located remotely visually assess the student skills based on the relative position of the virtual models displayed and the associated simulation parameters.

Using the above CARS, a student in a practice ER can perform the ETI while two or more instructors located remotely visualize, interact during the training procedure, and trigger difficult intubation scenarios (e.g. blocked airway and halo cervical traction) by changing the simulations parameters (e.g., breathing rate, hearth rate) as illustrated in Figure 1.

![Figure 1: Instructors visualizing the 3D models relative position (left), while a remote student performs the ETI procedure (right)](image)

Using this training CARS, the student has the ability to visualize the changes in the HPS behavior (e.g., blocked airway) and the associated virtual models (relative position of the virtual endotracheal tube and virtual trachea – Figure 2). Based on this visual feedback the student will adopt different procedures on the simulator in order to correctly accomplish the intubation.

![Figure 2: Virtual models of the trachea and endotracheal tube](image)

Enhancement of the HPS with cooperative AR capability has the potential to:
• Simultaneously train local and remotely located students;
• Allow students to actually “see” and therefore better understand their actions on the HPS which affects the behavior of the simulator;
• Allow an instructor to change the simulation parameters and confront students with different emergency scenarios (e.g. blocked airway, different ventilatory patterns).

This CARS example will be formally modeled and detailed in Section 4.

2.2. AR Systems for Remote Telerobotic Manipulation

Another example that would take advantage of our formal reasoning model which will be proposed in the next section is an AR Remote Telerobotic Manipulation system. Although this system will not be discussed in detail it is interesting to emphasize the potential and the wide range of collaborative applications that can benefit from the formal model.

With the advances in multi-modal interaction devices, integrated multi-modal interfaces can enable a team to visually and haptically (e.g., force feedback) sense the environment of a robot and to remotely control a robot’s navigation/manipulation in hazardous environments. Such a cooperative system will extend the human visual and haptic telepresence to near and far space via human-robotic systems and by interconnecting the visual senses and decision making of remote participants [2].

Systems for remote surface exploration or orbit assembly and repair tasks and maneuvers are under continuous investigation by the National Space Agency (NASA) [2, 14]. Such systems help “extend human presence throughout the solar system” by extending human telepresence to near and far space via robotic systems and across astronauts during surface exploration or during station repair.

In what follows we are briefly presenting the functionality of such a prototype based on the following real scenario. During a space mission repairs have to be executed on the International Space Station located on the Earth’s orbit. An astronaut located in the Space Shuttle attached to the station uses the system to manipulate a robotic arm during repairs. At the same time he receives repair instructions/protocols from the Earth’s surface base station through an AR-based system (Figure 3).

Figure 3: Multi-Modal Interaction System

The system has the potential to:
• Provide haptic feedback to the user regarding the force applied by the robotic arm while repair actions are executed (e.g., rotating a valve until a certain force threshold has been reached);
• Allows the user and the team of engineers located on the land station to actually “see” and therefore better understand their actions on the component being repaired.
• Allows the user and the team of engineers located on the land to communicate in real-time on their actions.

3. Modeling CARSs

In this section we propose an automata-based formalism for CARSs and formulate objectives as reachability-like decision problems in the formalism.

Actors

Actors are entities that are able to perform complex operations on a given set of variables. These operations are specified with respect to a concrete application. In what follows we assume that a set \(A = \{A_1, \ldots, A_k\} \) of \(k \geq 1 \) actors is given.

Objectives

Let \(V = \{x_1, \ldots, x_m\} \) be a set of (typed) variables, each of which has associated a type \(\tau_i \) and a domain \(D_{\tau_i} \). In our approach, each domain is at most countable. Because of this, the notation \([a, b]\) will be mostly used to denote finite intervals (e.g., \([1, 3]\) may denote the set \{1, 2, 3\} or the set \{1, 1.5, 2, 2.5, 3\}; the distinction will be clear from the context).

An observation state over \(V \) (o-state, for short) is any assignment \(\gamma : V \rightarrow \bigcup_{\tau} D_{\tau} \) such that \(\gamma(x) \in D_\tau \), for any type \(\tau \) and variable \(x \) of type \(\tau \). Denote by \(\Gamma(V) \), or simply \(\Gamma \) when no confusion may arise, the set of all o-states over \(V \).

O-states represent discrete observations of the behavior of a given system. Actors may interact with the system and guide its behavior. Therefore, o-states are controllable up to some extent. Given an initial o-state \(\gamma_0 \) and a final o-state \(\gamma_f \), an objective can be roughly defined as a sequence of actions that actors are to perform in order for the system to reach \(\gamma_f \) from \(\gamma_0 \).

Environments and Actions

Each actor acts in some environment and performs some actions. Each action performed by an actor \(A \) presupposes a time \(\tau \) required by \(A \) to read the current o-state \(\gamma \) and a time \(\tau' \) required by \(A \) to perform an action.

The time values \(\tau \) and \(\tau' \) depend on the environment in which the actors act. For example, a satellite orbiting Earth reads the current state (from an Earth base) faster than a satellite orbiting March (Figure 4 illustrates this).

If a set \(Q \) of states is associated with an actor \(A \), then the time values needed by \(A \) to read the current o-state and to perform an action can be given by two functions, the read-time function \(\text{read}_A : Q \rightarrow T \) and the write-time function \(\text{write}_A : Q \rightarrow T \), where \(T \) is a set of time values (each of which is a non-negative real number).
Of course, many variations of these two functions can be defined, depending on the system we want to model: τ (τ') may be constant for each actor and each action, or τ (τ') may depend on actors, or τ (τ') may depend on actors and actions (an actor may not need to read the entire state in order to be able to perform a required action).

Modeling actors An actor is a 4-tuple $A = (Q, \Sigma, \delta, q_0)$, where Q is a finite non-empty set of states, Σ is a set of inputs, $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q \times \Sigma)$ is the transition function (which may be a partial function), and $q_0 \in Q$ is the initial state ($\mathcal{P}(X)$ stands for the powerset of X).

As we can see, an actor is a kind of a non-deterministic automaton, the only difference consisting in the fact that infinite input sets are also allowed.

The size of the actor A, denoted $|A|$, is the number of transitions of A.

In most cases, Σ will be the set $\Gamma(X)$ of all o-states over some subset $X \subseteq \mathcal{V}$ of variables. In such a case, the actor A will be called *local* if $X \subset \mathcal{V}$, and *global* if $X = \mathcal{V}$. A local actor has access only to a proper subset of variables. Moreover, to have a flexible notation, especially with computations which are going to be defined in what follows, we will extend the transition function of local actors from $\Gamma(X)$ to $\Gamma(\mathcal{V})$ by $(q', \gamma') \in \delta(q, \gamma)$ whenever there exists $(q', \theta') \in \delta(q, \theta)$ such that $\gamma(x) = \theta(x)$ and $\gamma'(x) = \theta'(x)$ for all $x \in X$, and $\gamma(y) = \gamma'(y)$ for all $y \in \mathcal{V} - X$.

We emphasize that such an extension is just for technical purposes (see below the definition of a computation).

Time-constraints If an actor A is in a state q and it is not able to read the current o-state in due time, then no action specific to q can be triggered by A.

Time-constraints impose time restrictions on triggering actions. A time-constraint is any function $C : \Gamma \rightarrow T \cup \{\infty\}$. $C(\gamma)$ gives the maximum delay permitted to the actors to trigger their
actions in state γ. When $C(\gamma) = \infty$, we will say that no time-constraint is imposed.

Cooperative Systems
Now, we introduce our model, called *cooperative system* (CS). Such a system is defined as a 5-tuple $S = (V, A, read_A, write_A, C)$, where V is a set of (typed) variables, A is a set of actors over V (i.e., their inputs are o-states over subsets of variables), $read_A = \{read_A | A \in A\}$ is a set of read-time functions, $write_A = \{write_A | A \in A\}$ is a set of write-time functions, and C is a time-constraint.

If only finite domains are associated to variables, then we will say that S is a *finite-domain CS*, and if all actors are local, then S will be called a *local CS*.

The *size* of a CS S with k actors is $|S| = \sum_{i=1}^k ||A_i||$, where A_i is the ith actor of S.

Computations
A *configuration* of a cooperative system is any $(k+2)$-tuple $(t, q_1^1, \ldots, q_k^1, \gamma)$, where t is the current time, q_i^1 is the current state of A_i, for any i, and γ is the current o-state.

The transition relation \vdash is given by $(t, q_1^1, \ldots, q_k^1, \gamma) \vdash (t', q_2^1, \ldots, q_k^1, \gamma')$ iff there exists i such that:

1. $read_{A_i}(q_i^1) \leq C(\gamma)$ (i.e., A_i satisfies the time-constraint $C(\gamma)$);
2. A_i performs an action, i.e.
 - (a) $\delta_i(q_i^1, \gamma) = (q_i^2, \gamma')$;
 - (b) $t' = t + read_{A_i}(q_i^1) + write_{A_i}(q_i^1)$;
3. $q_j^2 = q_j^1$, for all $j \neq i$ (i.e., the other actors do not perform any action).

As usual, \vdash^+ is the transitive closure of \vdash, and \vdash^* is the reflexive and transitive closure of \vdash.

A computation of S usually starts with the initial configuration $(0, q_1^1, \ldots, q_k^1, \gamma_0)$, where γ_0 is the initial o-state and q_0^i is the initial state of A_i, for any i. If

$$(0, q_0^1, \ldots, q_0^k, \gamma_0) \vdash^* (t, q_1^1, \ldots, q_k^1, \gamma)$$

then we will say that γ is reachable in time t.

Objectives Again
Objectives with respect to a cooperative system can be often defined as variations of the reachability problem which asks to decide whether the actors of a cooperative system can cooperate in order to complete a job. They start with an initial description of the problem they have to solve (which is an initial o-state) and should end up with a final o-state. Formally, the problem is as follows:
Reachability Problem

Instance: cooperative system \(S \), initial o-state \(\gamma_0 \),
and final o-state \(\gamma_f \);

Question: is \(\gamma_f \) reachable from \(\gamma_0 \)?

Knowing that a final o-state \(\gamma_f \) can be reached from an initial o-state \(\gamma_0 \) is important. However, in many practical cases it is not enough. One might also want to know how this o-state is reachable. For example, if a cooperative system models an ETI and during the intubation the patient dies, then it is not important at all that the intubation was successful. The intubation should be done in such a way that the patient is kept alive. Therefore, each intermediate state should satisfy some property.

Given a predicate \(P \) over \(\Gamma \), we say that an o-state \(\gamma' \) is \(P \)-reachable in \(S \) from an o-state \(\gamma \) if there exists a computation

\[
(t_0, q_1^0, \ldots, q_n^0, \gamma_0) \vdash \cdots \vdash (t_i, q_1^i, \ldots, q_n^i, \gamma_i) \vdash \cdots \vdash (t_k, q_1^k, \ldots, q_n^k, \gamma_k)
\]

such that \(t_0 = 0 \), \(\gamma = \gamma_0 \), \(\gamma' = \gamma_k \), and \(P(\gamma_i) \) holds true, for all \(i \).

P-Reachability Problem

Instance: cooperative system \(S \), initial o-state \(\gamma_0 \),
final o-state \(\gamma_f \), and predicate \(P \) over \(\Gamma \);

Question: is \(\gamma_f \) \(P \)-reachable from \(\gamma_0 \)?

It is obvious that reachability is a particular case of P-reachability (the case where \(P \) is satisfied by all o-states).

Many practical cases require that specific jobs be completed in a given amount of time. For example, a robot sent in space to fix a satellite should complete the job in a given time interval, a medical procedure should be applied to a patient in a given time interval etc. Thus, we define the following version of the P-reachability problem.

Time-reachability Problem

Instance: cooperative system \(S \), initial o-state \(\gamma_0 \),
final o-state \(\gamma_f \), predicate \(P \) over \(\Gamma \), and
time value \(t \);

Question: is \(\gamma_f \) \(P \)-reachable from \(\gamma_0 \) in time \(t' \leq t \)?)

4. Endo-tracheal Intubation from a Formal Point of View

The main cause of failure in applying ETI is the inability to visualize the larynx during laryngoscopy after neck flexion and external cricoid pressure was applied [10]. Therefore, training
scenarios with corresponding recuperative actions should take into consideration the following two main cases:

1. **Blocked airway.** In such cases the airway is blocked by a foreign object or by the inflated tongue. An anti-inflammatory solution is usually administered and/or an alternative route for the air is found. In the AR intubation scenario (Section 2), the blocked airway can be simulated by changing one of the HPS parameters. Let us define the parameter $x \in \{0, 1\}$, where 0 denotes a normal condition for intubation and 1 denotes a blocked airway condition;

2. **Halo cervical traction** condition is usually caused by fractured vertebrae. As a consequence, the head cannot be aligned in the correct intubation position. In such cases, an alternative cuffed pharyngeal tube is employed. The halo cervical traction scenario can be simulated by changing one of the HPS parameters. Let us denote this parameter by $y \in \{0, 1\}$, where 0 denotes a normal condition for intubation and 1 denotes a halo cervical situation.

ETI can be formalized as a reachability problem in our model of cooperative systems. We shall consider a very simplified scenario just as a running example for the paper:

1. **Parameters** that characterize the system:

 - HPS mechanical parameters that allow modification of the mechanical properties of the simulator:
 - blocked airway (through swollen tongue) parameter $x \in \{0, 1\}$;
 - halo cervical traction condition parameter $y \in \{0, 1\}$;

 - HPS soft parameters whose values are obtained by monitoring the patient:
 - breathing rate br, measured as breathing cycles per minute (e.g. adult 12-20 cycles/min). br must be maintained in a given interval $[br_{min}, br_{max}]$ during any ETI procedure;
 - heart rate hr, measured as beats per minute (e.g adult 60-80 beats/min). hr must be maintained in a given interval $[hr_{min}, hr_{max}]$ during any ETI procedure;

 - Position and orientation information for the virtual models superimposition given as the tube dynamic tracking parameters. This parameter, denoted po, is an array of 8 values, the first 4 represent the orientation quaternion, followed by the 3 values for translation and one error term [12];

 - Pressure p measured on the tube tip during intubation and which must be maintained in a given interval $[0, p_{max}]$.

For each parameter, its domain is a finite set;
2. An o-state is of the form $\gamma = (x, y, br, hr, po, p)$. The initial o-state γ_0 characterizes the fact that HPS is in the horizontal position, the endotracheal tube is ready for intubation, and the other parameters have some initial values. The final o-state γ_f is characterized by the fact that the HPS is in the horizontal position and the endotracheal tube is correctly placed in the trachea;

3. Actors in the system are two medical doctors A_1 and A_2 which are the instructors, and one student A_3. They collaborate (interact) through their AR-based interface. The instructors can modify the system parameters to simulate difficult cases for the student. Therefore, the set of actors is $\mathcal{A} = \{A_1, A_2, A_3\}$ (their actions will be described later);

4. The environment in which the actors perform is subjected to several constraints such as:
 - Network communication delays (e.g., transmission, propagation, and buffering delay). These delays depend on the communication infrastructure;
 - System delays (e.g., rendering virtual components and tube tracking delay). These delays depend on the complexity of each local system (e.g., for more tracking sensors connected that the node the update cycle will increase). A complex system can produce delays that will affect the rendering cycle of the virtual components to unacceptable frame rates (i.e., the frame rate drops below 30 frames per second);

5. The main objective is to train the student to perform a correct ETI, characterized by:
 - a short period of time t for performing the intubation ($t \leq t_{\text{max}}$);
 - keeping the vocal cords and other internal tissue intact (pressure on the internal tissue should be $p \leq p_{\text{max}}$);
 - the HPS parameters br and hr should be maintained in the appropriate intervals $[br_{\text{min}}, br_{\text{max}}]$ and $[hr_{\text{min}}, hr_{\text{max}}]$, respectively, during the intubation procedure.

During the ETI procedure, instructors may change the current values of these parameters facing the student with more or less difficult cases. We are focusing our attention on the following four cases: normal case ($x = 0$ and $y = 0$), blocked airway ($x = 1$ and $y = 0$), halo cervical condition ($x = 0$ and $y = 1$), halo cervical condition and blocked airway ($x = 1$ and $y = 1$).

We assume that A_1 and A_2 are global actors; they can monitor all parameters but A_1 can only change the parameters in $\{x, y\}$, and A_2, the ones in $\{br, hr\}$. The student is a local actor and, indirectly (by his actions), can modify the parameters in the set $\{br, hr, po, p\}$.

A possible scenario for A_1 is the one given by the automaton in Figure 5. Each state corresponds exactly to one of the four case mentioned above. A_1 can modify x or y in an obvious way as described by his automaton. For instance, "$y = 0 \rightarrow y = 1$" says that A_1 can trigger a halo cervical condition by setting $y = 1$, whenever $y = 0$ and independently of x’s value (the other actions are similarly interpreted). The only restriction is that once the halo cervical condition has been set it is irreversible for one simulation cycle.
A corresponding scenario for A_2 is described in Figure 6. The arc labeled “$[br, hr] || br$” says that A_2 can modify the breathing rate to bring it outside the normal breathing rate interval, denoted “[br]”, whenever br and hr are in their associated normal intervals, denoted “[br, hr]” (the other labels are similarly interpreted). The purpose of this transition is to train the student to handle additional complications arising during the intubation procedure.

Both automata are characterized by constant read- and write-times τ.

At a remote site, A_3 performs the intubation procedure and works toward ameliorating the conditions imposed by A_1 and A_2, as part of his training exercise. Figure 7 describes the possible states for the HPS as an effect of A_3’s interaction. All actions performed by the student can be grouped into three classes according to x and y’s values. Only the actions for the normal intubation procedure ($x = 0, y = 0$) are illustrated. The other three difficult cases are grouped into two dashed boxes A_{32} and A_{33}. The arc labels have similar interpretation. For
instance, “[br, hr] po + ∆” means that the student will proceed with the intubation procedure by advancing the tube insertion by a value ∆, provided that the HPS’s breathing and heart rate are normal.

We will now consider an example of computation. Let γ₀ = (0, 0, 15, 65, po, 0), where po gives the initial parameters of the tube. The following sequence of transitions define a computation:

(0, q₀, q₀, q₀, γ₀) ⊢ (τ₀, q₀, q₀, q₁, γ₁)
| ⊢ (τ₀ + τ₁ + τ₁', q₀, q₀, q₁, γ₁)
| ⊢ (τ₀ + τ₁ + τ₆' + τ, q₀, q₁, q₂, γ₂)
| ⊢ (τ₀ + 2τ₁ + 2τ₆' + τ + τ₂ + τ₃', q₀, q₁, q₂, γ₃)
| ⊢ (τ₀ + 2τ₁ + 2τ₆' + τ + τ₂ + τ₃' + τ₄, q₀, q₁, q₂, γ₄)

where
γ₁ = (0, 0, 15, 65, po + ∆, 0), γ₂ = (0, 0, 25, 65, po + ∆, 0)
γ₃ = (0, 0, 18, 65, po + ∆, 0), γ₄ = (0, 0, 15, 65, po + 2∆, 0)

The first two steps in the computation above are performed by the student who reads the initial configuration in time τ₀ and then advances the tube into the trachea by ∆ units in time τ₁. Now, the second instructor faces the student with a difficult situation by bringing the parameter br out of its normal values (γ₂). This case is managed by the student whose actions will hopefully bring the parameter back into its normal interval; his new state is q₂. Then, the student continues the intubation.

Each biological parameter is characterized by two intervals: a normal interval which gives the normal values of the parameters, and a survival interval which extends the normal interval with critical values (i.e., values which are critical for the patient’s life). Values outside the survival interval are regarded as fatal values. We assign each parameter (br and hr) a survival interval and define the predicate P which is satisfied by an o-state γ if and only if the parameters are
in the corresponding survival intervals. For instance, if we assume that 25 is in the survival interval for \(br \), then the computation above is a P-computation.

5. Basic Properties of Cooperative Systems

We have introduced CSs and showed how they can be used to model CARSs. In this section we will conduct a short investigation of a few basic properties of CSs.

5.1. Petri nets and Cooperative Systems

It is important to know the relationship between cooperative systems and other models focusing on concurrency, distribution, and cooperation. One of these models is that of a Petri net \(^1\) [13].

Petri nets can be viewed as cooperative systems without time-constraints. Indeed, let \(\Sigma \) be a Petri net. To each place \(s \) an integer variable \(x_s \) is associated, and to each transition \(t \) an actor \(A_t \) is associated, as follows:

- \(A_t \) has exactly one state \(q_{0_t} \), which is also the initial state of the actor;
- \(A_t \)'s transition function \(\delta \) is defined for any pair \((q_0, \gamma) \) satisfying \(\gamma(x_s) \geq W(s,t) \) for all \(s \). Moreover, \(\delta(q_0, \gamma) \) is defined by \((q_0, \gamma') \), where \(\gamma'(x_s) = \gamma(x_s) - W(s,t) + W(t,s) \) for all \(s \).

For each automaton \(A_t \), \(\text{read}_{A_t}(q_0) = \text{write}_{A_t}(q_0) = 0 \). This construction is illustrated in Figure 8 (the inscription on the arc in Figure 8(b) says that the transition can be applied only if \(x_{s_1} \geq 1 \) and \(x_{s_2} \geq 1 \) and, in this case, \(x_{s_2} \) will be decremented and \(x_{s_3} \) will be incremented).

![Figure 8: a) A transition t; b) The actor A_t](image)

Time-constraints can be added in an arbitrary but fixed way.

\(^1\)A Petri net is a tuple \(\Sigma = (S,T,F,W) \), where \(S \) and \(T \) are two finite sets (of places and transitions, respectively), \(S \cap T = \emptyset \), \(F \subseteq (S \times T) \cup (T \times S) \) is the flow relation, and \(W : (S \times T) \cup (T \times S) \rightarrow \mathbb{N} \) is the weight function of \(\Sigma \) verifying \(W(x,y) = 0 \) iff \((x,y) \notin F \).

The transition relation of a Petri net \(\Sigma \) states that a transition \(t \) is enabled at a marking \(M \), denoted \(M[t] \), if \(M(s) \geq W(s,t) \) for all \(s \in S \). If \(t \) is enabled at \(M \), then it can occur yielding a new marking \(M' \) given by \(M'(s) = M(s) - W(s,t) + W(t,s) \) for all \(s \in S \); we denote this by \(M[t]M' \).
Given a marking M of Σ, define the o-state γ_M by $\gamma_M(x_s) = M(s)$, for all s. Now, it is easy to see that for any two markings M and M', and any transition t, we have

$$M[t]M' \iff (0, q_0, \ldots, q_0, \gamma_M) \vdash_{A_t} (0, q_0, \ldots, q_0, \gamma_{M'})$$

where \vdash specifies that the transition is performed by A_t.

Under monotonicity and local finiteness restrictions, cooperative systems without time-constraints can be simulated by Petri nets.

Definition 5.1. A cooperative system S is called **monotonic** if:

- for any variable x, its domain is \mathbb{N};
- for any actor A and any transition $(q', \gamma') \in \delta(q, \gamma)$ of A, the following property holds true
 $$(q', \bar{\gamma} + (\gamma' - \gamma)) \in \delta(q, \bar{\gamma})$$
 for any $\bar{\gamma} \geq \gamma$ (the inequality between functions is component-wise defined).

Definition 5.2. A monotonic cooperative system S is called **locally finite** if for any actor A and any states q and q' of A, there exists a finite set of vectors with integer components, $\{V_1, \ldots, V_p\}$, such that for any transition $(q', \gamma') \in \delta(q, \gamma)$ of A there exists i with $\gamma' - \gamma = V_i$.

Theorem 5.1. For any monotonic and locally finite cooperative system S without time-constraints, there exists a Petri net Σ such that for any configurations c and c' of S there are two markings M_c and $M_{c'}$ and a transition $t_{c,c'}$ satisfying

$$c \vdash c' \iff M_c[t_{c,c'}]M_{c'}.$$

5.2. The Reachability Problem

As we have mentioned in Section 3 and also exemplified in Section 4, objectives of CARSs can be formulated as reachability problems for CSs. In this section we will investigate this problem.

First, for unrestricted cooperative systems we have the following result.

Theorem 5.2. The reachability problem for cooperative systems is undecidable.

We consider now the case of finite-domain CSs (i.e., each variable has associated a finite domain). Instances of the time-reachability problem where t is of polynomial size and P can be verified in polynomial time (w.r.t. the size of the cooperative system), play an important role in practice. The problem consisting of all these instances will be called the polynomial time-reachability problem for cooperative systems.

Theorem 5.3. The polynomial time-reachability problem for finite-domain cooperative systems is NP-complete.
6. Conclusion and Future Work

CARSs enable collaborative work spaces separated by miles of distance to appear as one; remote and local teams appear to be one team co-present in a space that is both physical and virtual. For communities of distributed emergency teams, medical teams, and engineering design groups, these networked spaces will open the door to a pattern of work and collaboration that can bridge both distances and make creative, collaborative ideas feel physical, tangible, and most of all, shared. As we enter a period where work teams are distributed internationally and travel is deeply uncertain and vulnerable to disruption, this is a vision not only worth pursuing, but one that calls out for research.

This work proposes an automata-based formal model for CARSs that allows and in-depth analysis of such cooperative systems. The model seems to be a good fit and its properties indicate a high potential for further investigation. Thus, we were able to establish a connection between cooperative systems and Petri nets, a well-studied model of distribution and concurrency. We also showed that reachability for cooperative systems is in general undecidable, and it is NP-complete for the finite-domain ones.

Many problems remain to be investigated. First of all, an in-depth study of the basic properties of the model is necessary by exploiting the rich and mature automata theory apparatus. Verification techniques should be considered too. Many such techniques developed nowadays are based on automata and, therefore, we anticipate the application of these techniques to cooperative AR systems through the proposed model. While we are currently focusing on these problems, a software tool allowing simulation, testing, and validation of CARSs is under development.

References

