Part Of Speech (POS) Tagging

Based on
“Foundations of Statistical NLP” by C. Manning & H. Schütze, ch. 10
MIT Press, 2002
1. POS Tagging: Overview

- **Task:** labeling (tagging) each word in a sentence with the appropriate POS (morphological category)

- **Applications:** partial parsing, chunking, lexical acquisition, information retrieval (IR), information extraction (IE), question answering (QA)

- **Approaches:**
 - Hidden Markov Models (HMM)
 - Transformation-Based Learning (TBL)
 - others: neural networks, decision trees, bayesian learning, maximum entropy, etc.

- **Performance acquired:** 90% – 98%
Sample POS Tags
(from the Brown/Penn corpora)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>article</td>
</tr>
<tr>
<td>BEZ</td>
<td>is</td>
</tr>
<tr>
<td>IN</td>
<td>preposition</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
</tr>
<tr>
<td>JJR</td>
<td>adjective: comparative</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
</tr>
<tr>
<td>NN</td>
<td>noun: singular or mass</td>
</tr>
<tr>
<td>NNP</td>
<td>noun: singular proper</td>
</tr>
<tr>
<td>NNS</td>
<td>noun: plural</td>
</tr>
<tr>
<td>PERIOD</td>
<td>.:?!</td>
</tr>
<tr>
<td>PN</td>
<td>personal pronoun</td>
</tr>
<tr>
<td>RB</td>
<td>adverb</td>
</tr>
<tr>
<td>RBR</td>
<td>adverb: comparative</td>
</tr>
<tr>
<td>TO</td>
<td>to</td>
</tr>
<tr>
<td>VB</td>
<td>verb: base form</td>
</tr>
<tr>
<td>VBD</td>
<td>verb: past tense</td>
</tr>
<tr>
<td>VBG</td>
<td>verb: past participle, gerund</td>
</tr>
<tr>
<td>VBN</td>
<td>verb: past participle</td>
</tr>
<tr>
<td>VBP</td>
<td>verb: non-3rd singular present</td>
</tr>
<tr>
<td>VBZ</td>
<td>verb: 3rd singular present</td>
</tr>
<tr>
<td>WDT</td>
<td>wh-determiner (what, which)</td>
</tr>
</tbody>
</table>
An Example

The representative put chairs on the table.

put – option to sell; *chairs* – leads a meeting

Tagging requires (limited) **syntactic disambiguation**.

But, there are multiple POS for many words

English has production rules like noun → verb

(e.g., *flour* the pan, *bag* the groceries)

So,...
The first approaches to POS tagging

• [Greene & Rubin, 1971]
 deterministic rule-based tagger
 77% of words correctly tagged — not enough; made the problem look hard

• [Charniak, 1993]
 statistical, “dumb” tagger, based on Brown corpus
 90% accuracy — now taken as baseline
2. POS Tagging Using Markov Models

Assumptions:

- **Limited Horizon:**
 \[P(t_{i+1} | t_{1,i}) = P(t_{i+1} | t_i) \]
 (first-order Markov model)

- **Time Invariance:**
 \[P(X_{k+1} = t^j | X_k = t^i) \] does not depend on \(k \)

- **Words are independent of each other**
 \[P(w_{1,n} | t_{1,n}) = \prod_{i=1}^{n} P(w_i | t_{1,n}) \]

- **A word’s identity depends only of its tag**
 \[P(w_i | t_{1,n}) = P(w_i | t_i) \]
Determining Optimal Tag Sequences
The Viterbi Algorithm

\[
\text{argmax}_{t_1...n} P(t_1...n|w_1...n) = \text{argmax}_{t_1...n} \frac{P(w_1...n|t_1...n)P(t_1...n)}{P(w_1...n)}
\]

\[
= \text{argmax}_{t_1...n} P(w_1...n|t_1...n)P(t_1...n)
\]

using the previous assumptions

\[
= \text{argmax}_{t_1...n} \prod_{i=1}^{n} P(w_i|t_i) \prod_{i=1}^{n} P(t_i|t_{i-1})
\]

2.1 **Supervised POS Tagging** — using tagged training data:

MLE estimations:

\[
P(w|t) = \frac{C(w,t)}{C(t)}, \quad P(t''|t') = \frac{C(t',t'')}{C(t')}
\]
Exercises

10.4, 10.5, 10.6, 10.7, pag 348–350

[Manning & Schütze, 2002]
The Treatment of Unknown Words (I)

• use a priori uniform distribution over all tags: badly lowers the accuracy of the tagger

• feature-based estimation [Weishedel et al., 1993]:
 \[P(w|t) = \frac{1}{Z} P(\text{unknown word} \mid t)P(\text{Capitalized} \mid t)P(\text{Ending} \mid t) \]
 where \(Z \) is a normalization constant:
 \[Z = \sum_{t'} P(\text{unknown word} \mid t')P(\text{Capitalized} \mid t')P(\text{Ending} \mid t') \]
 error rate 40% \(\Rightarrow \) 20%

• using both roots and suffixes [Charniak, 1993]
 example: \textit{doe-s} (verb), \textit{doe-s} (noun)
The Treatment of Unknown Words (II)

Smoothing

• (“Add One”) [Church, 1988]

\[P(w|t) = \frac{C(w, t) + 1}{C(t) + k_t} \]

where \(k_t \) is the number of possible words for \(t \)

• [Charniak et al., 1993]

\[P(t''|t') = (1 - \epsilon) \frac{C(t', t'')}{C(t')} + \epsilon \]

Note: not a proper probability distribution
2.2 Unsupervised POS Tagging using HMMs

no labeled training data;
use the **EM** (Forward-Backward) algorithm

Initialisation options:

- random: not very useful (do ≈ 10 iterations)
- when a dictionary is available (2-3 iterations)
 - [Jelinek, 1985]
 \[
 b_{j,l} = \frac{b_{j,l}^* C(w^l)}{\sum_{w,m} b_{j,m}^* C(w^m)} \quad \text{where} \quad b_{j,l}^* = \begin{cases}
 0 & \text{if } t^j \text{ not allowed for } w^l \\
 \frac{1}{T(w^l)} & \text{otherwise}
\end{cases}
\]
 - $T(w^l)$ is the number of tags allowed for w^l
 - [Kupiec, 1992] group words into equivalent classes.
 Example:
 \[
 u_{JJ,NN} = \{\text{top, bottom,...}\}, \quad u_{NN,VB,VBP} = \{\text{play, flour, bag,...}\}
 \]
 distribute $C(u_L)$ over all words in u_L
2.3 Fine-tuning HMMs for POS Tagging

[Brands, 1998]
Trigram Taggers

- 1st order MMs = bigram models
 each state represents the previous word’s tag
 the probability of a word’s tag is conditioned on the previous tag

- 2nd order MMs = trigram models
 state corresponds to the previous two tags
 tag probability conditioned on the previous two tags

- example:
 is clearly marked ⇒ BEZ RB VBN more likely than BEZ RB VBD
 he clearly marked ⇒ PN RB VBD more likely than PN RB VBN

- problem: sometimes little or no syntactic dependency, e.g. across commas. Example: *xx, yy: xx* gives little information on *yy*

- more severe data sparseness problem
Linear interpolation

• combine unigram, bigram and trigram probabilities as given by first-order, second-order and third-order MMs on words sequences and their tags

$$P(t_i \mid t_{i-1}) = \lambda_1 P_1(t_i) + \lambda_2 P_2(t_i \mid t_{i-1}) + \lambda_3 P_3(t_i \mid t_{i-1}, i-2)$$

• $\lambda_1, \lambda_2, \lambda_3$ can be automatically learned using the EM algorithm

see [Manning & Schütze 2002, Figure 9.3, pag. 323]
Variable Memory Markov Models

- have states of mixed “length” (instead of fixed length as bigram or trigram tagger have)
- the actual sequence of words/signals determines the length of memory used for the prediction of state sequences
3. POS Tagging based on Transformation-based Learning (TBL) [Brill, 1995]

- exploits a wider range of regularities (lexical, syntactic) in a wider context
- input: tagged training corpus
- output: a sequence of learned transformations rules; each transformation relabels some words
- 2 principal components:
 - specification of the (POS-related) transformation space
 - TBL learning algorithm; transformation selection criterion: greedy error reduction
TBL Transformations

- Rewrite rules: \(t \rightarrow t' \) if condition \(C \)

- Examples:

<table>
<thead>
<tr>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>VB</td>
<td>previous tag is TO</td>
<td>...try to hammer...</td>
</tr>
<tr>
<td>VBP</td>
<td>VB</td>
<td>one of prev. 3 tags is MD</td>
<td>...could have cut...</td>
</tr>
<tr>
<td>JJR</td>
<td>RBR</td>
<td>next tag is JJ</td>
<td>...more valuable player...</td>
</tr>
<tr>
<td>VBP</td>
<td>VB</td>
<td>one of prev. 2 words in n’t</td>
<td>...does n’t put...</td>
</tr>
</tbody>
</table>

- A later transformation may partially undo the effect.
 Example: *go to school*
TBL POS Algorithm

- tag each word with its most frequent POS
- for $k = 1, 2, ...$
 - Consider all possible transformations that would apply at least once in the corpus
 - set t_k to the transformation giving the greatest error reduction
 - apply the transformation t_k to the corpus
 - stop if termination criterion is met (error rate $< \epsilon$)

- output: $t_1, t_2, ..., t_k$

- issues: 1. search is greedy; 2. transformations applied (lazily...) from left to right
TBL Efficient Implementation:
Using Finite State Transducers [Roche & Scabes, 1995]

\[t_1, t_2, \ldots, t_n \Rightarrow \text{FST} \]

1. convert each transformation to an equivalent FST: \(t_i \Rightarrow f_i \)

2. create a local extension for each FST: \(f_i \Rightarrow f'_i \)
 so that running \(f'_i \) in one pass on the whole corpus be equivalent to running \(f_i \) on each position in the string

 Example: rule \(A \rightarrow B \) if \(C \) is one of the 2 precedent symbols
 \(CAA \rightarrow CBB \) requires two separate applications of \(f_i \)
 \(f'_i \) does rewrite in one pass

3. compose all transducers: \(f'_1 \circ f'_2 \circ \ldots \circ f'_R \Rightarrow f_{ND} \)
 typically yields a non-deterministic transducer

4. convert to deterministic FST: \(f_{ND} \Rightarrow f_{DET} \)
 (possible for TBL for POS tagging)
TBL Tagging Speed

- **transformations:** $O(Rkn)$

 $$R = \text{the number of transformations}$$
 $$k = \text{maximum length of the contexts}$$
 $$n = \text{length of the input}$$

- **FST:** $O(n)$ with a much smaller constant
 one order of magnitude faster than a HMM tagger

- [André Kempe, 1997] work on HMM \rightarrow FST
Appendix A
Transformation-based Error-driven Learning

Training:
1. unannotated input (text) is passed through an initial state annotator
2. by comparing its output with a standard (e.g. manually annotated corpus), transformation rules of a certain template/pattern are learned to improve the quality (accuracy) of the output.
Reiterate until no significant improvement is obtained.

Note: the algo is greedy: at each iteration, the rule with the best score is retained.

Test:
1. apply the initial-state annotator
2. apply each of the learned transformation rules in order.
Transformation-based Error-driven Learning
Appendix B
Unsupervised Learning of Disambiguation Rules for POS Tagging
[Eric Brill, 1995]

Plan:

1. An unsupervised learning algorithm (i.e., without using a manually tagged corpus) for automatically acquiring the rules for a TBL-based POS tagger

2. Comparison to the EM/Baum-Welch algorithm used for unsupervised training of HMM-based POS taggers

3. Combining unsupervised and supervised TBL taggers to create a highly accurate POS tagger using only a small amount of manually tagged text
1. Unsupervised TBL-based POS tagging

1.1 Start with minimal amount of knowledge:
the allowable tags for each word.

These tags can be extracted from an on-line dictionary or through morphological and distributional analysis.

The “initial-state annotator” will assign all these tags to words in the annotated text.

Example:

Rival/JJ_NNP gangs/NNS have/VB_VBP
turned/VBD_VBN cities/NNS into/IN combat/NN_VB
tzones/NNS ./.
1.2 The transformations which will be learned will reduce the uncertainty. They will have the form:

Change the tag of a word from X to Y in the context C.

where X is a set of tags, $Y \in X$, and C is one of the form:

the previous/next tag/word is T/W.

Example:

From NN_VB_VBP to VBP if the previous tag is NNS
From NN_VB to VB if the previous tag is MD
From JJ_NNP to JJ if the following tag is NNS
1.3 The scoring

Note: While in supervised training the annotated corpus is used for scoring the outcome of applying transformations, in unsupervised training we need an *objective function* to evaluate the effect of learned transformations.

Idea: Use information from the distribution of unambiguous words to find reliable disambiguation contexts.

The value of the objective function:

The score of the rule

Change the tag of a word from \(\mathcal{X} \) to \(Y \) in context \(C \).

is the difference between the number of unambiguous instances of tag \(Y \) in (all occurrences of the context) \(C \) and the number of unambiguous instances of the most likely tag \(R \) in \(C \) (\(R \in \mathcal{X}, R \neq Y \)), adjusting for relative frequency.
Formalisation:
1. Compute:

\[
R = \arg\max_{Z \in \mathcal{X}, \ Z \neq Y} \ \frac{\text{incontext}(Z, C)}{\text{freq}(Z)}
\]

where:

\[
\text{freq}(Z) \text{ is the number of occurrences of words unambiguously tagged } Z \text{ in the corpus;}
\]

\[
\text{incontext}(Z, C) = \text{number of occurrences of words unambiguously tagged } Z \text{ in } C.
\]

Note:

\[
R = \arg\min_{Z \in \mathcal{X}, \ Z \neq Y} \left[\frac{\text{incontext}(Y, C)}{\text{freq}(Y)} - \frac{\text{incontext}(Z, C)}{\text{freq}(Z)} \right]
\]

where \(\text{freq}(Y)\) is computed similarly to \(\text{freq}(Z)\).
Formalisation (cont’d):

2. The **score** of the (previously) given rule:

\[
\text{incontext}(Y, C) - \frac{\text{incontext}(R, C)}{\text{freq}(R)} = \text{freq}(Y) \left[\frac{\text{incontext}(Y, C)}{\text{freq}(Y)} - \frac{\text{incontext}(R, C)}{\text{freq}(R)} \right] = \text{freq}(Y) \times \min_{Z \in \mathcal{X}, Z \neq Y} \left[\frac{\text{incontext}(Y, C)}{\text{freq}(Y)} - \frac{\text{incontext}(Z, C)}{\text{freq}(Z)} \right]
\]

In each iteration the learner searches for the transformation rule which maximizes this score.
1.4 Stop the training when no positive scoring transformations can be found.
2. Unsupervised learning of a POS tagger: Evaluation

2.1 Results
on the Penn treebank corpus [Marcus et al., 1993]: 95.1%
on the Brown corpus [Francis and Kucera, 1982]: 96%

(for more details, see Table 1, page 8 from [Brill, 1995])

2.2 Comparison to the EM/Baum-Welch unsupervised learning:
on the Penn treebank corpus: 83.6%
on 1M words of Associated Press articles: 86.6%;
Kupiec’s version (1992), using classes of words: 95.7%

Note: Compared to the Baum-Welch tagger, no overtraining occurs. (Otherwise an additional held-out training corpus is needed to determine an appropriate number of training iterations.)
3. Weakly supervised rule learning

Aim: use a tagged corpus to improve the accuracy of unsupervised TBL.

Idea: use the trained unsupervised POS tagger as the “initial-state annotator” for the supervised learner.

Advantage over using supervised learning alone:
- use both tagged and untagged text in training.
Combining unsupervised learning and supervised learning
Difference w.r.t. weakly supervised Baum-Welch:

- in TBL weakly supervised learning, supervision influences the learner after unsupervised training;
- in weakly supervised Baum-Welch, tagged text is used to bias the initial probabilities.

Weakness in weakly supervised Baum-Welch:

unsupervised training may erase what was learned from the manually annotated corpus.

Example: [Merialdo, 1995], 50K tagged words, test accuracy (by probabilistic estimation): 95.4%; but after 10 EM iterations: 94.4%!
Results: see Table 2, pag. 11 [Brill, 1995]

Conclusion: The combined training outperformed the purely supervised training at no added cost in terms of annotated training text.