Using Semantic Web Technologies to Discover Resources within the Intranet of an Organization

Sabin C. Buraga
Faculty of Computer Science
“A.I.Cuza” University of Iasi, Romania
http://www.infoiasi.ro/~busaco/

Teodora Rusu
“P.Poni” Institute of Macromolecular Chemistry, Iasi
teia@icpp.ro
Agenda

• Introduction
• ITW – General Architecture
 – Overall Presentation
 – ITW Web Services
 – ITW Web Agents
 – ITW User Interface
• ITW – Implementation Prototype
• Conclusions & Further Work
• **Web** ≡ data storage & presentation (Berners-Lee, 1989)

• **Semantic Web** (Berners-Lee *et al.*, 2001)
 – Relations between objects that can be identified ⇒ unified management of distributed information
 – Information needs no longer to be intended for human readers only, but also for machine processing
Intro

- Semantic Web applications:
 - Intelligent information services
 - Personalized Web sites
 - Semantically empowered search engines
 - Intelligent collaborative Web environments (Weblogs, wikis,...)
 - Flexible user-interaction
 - ...

Sabin Buraga & Teodora Rusu
One important issue is resource discovery within enterprise intranet.

We’ll present a solution: ITW – a multi-language distributed platform – exploits the temporal relations established between Web resources – uses a RDF/XML-based model for semantic representation of metadata and additional information (users, computers, time, etc.)
• **Goal:** to offer a heterogeneous interoperable infrastructure, based on Web components, for resource discovery within an intranet
 – Multi-platform (Linux & Windows)
 – Multi-language (C++, C#, Java, Perl)
 – Uses Web agents, (semantic) Web services, and other Web components
 – Communication between components is exclusively based on **XML (Extensible Markup Language)** family
- Through a Web portal-like interface, the user will be able to formulate complex queries that involve time.
- The information and the associated RDF (Resource Description Framework) metadata offered by ITW system is stored on independent servers.
ITW

Local Storage System

Google Web Services

ITW Agents

ITW Web Services

User Interface

Web (local)

Omega
ITW Web Services

• Local Web services
 – Provide information about the resources stored on the local Web (i.e. the intranet, the extranet or the public Web site)
 – Give access to these resources

• External Web services
 – developed by third-party organizations (e.g., Google)
ITW Web Services

- The physical localization and execution of the ITW Web services are transparent for the final user.
- We can consider these Web services as one entity (very similar with a computational Grid).
- To attach semantic descriptions for each Web service, OWL-S is used – process ontology expressed by OWL (Web Ontology Language) constructs.
ITW Web Services

Apache on Linux
- Perl SOAP::Lite Web Service

IIS on Windows
- C#.NET Web Service

Google Web APIs
- XUL Interface (CGI script)
• **ITW local storage system**
 – Store RDF documents that contain metadata and relations between found resources
 • Automatically generated by ITW agents
 • Interrogated by ITW Web services/agents
 – Based on database relational management systems
ITW Web Agents

• Developed within a multi-agent platform:
 – Two XML-based modular approaches:
 Omega (Alboaie & Buraga, 2004)
 ADF – Agent Development Framework (Nichifor & Buraga, 2004; Hritcu & Buraga, 2005)
ITW Web Agents

- **Omega**
 - Framework that offers an addressing space for the Web objects and a mechanism for remotely accessing the Web distributed resources (that can be viewed as objects)
 - For each object, different metadata constructs (expressed in RDF) are attached to specify semantic properties
 - We are using different XML vocabularies
ITW Web Agents

• **Omega** agents’ tasks
 – For each Web resource, a RDF document is generated in order to:
 • attach metadata: location, type (e.g., XHTML page, JPEG image, XSL stylesheet file, etc.), owner, access method, timestamp of last modification
 – **XFiles** (Buraga, 2002) language based on XML
 • express temporal information regarding the relationship between two resources – **TRSL – Temporal Relation Specification Language** (Buraga & Ciobanu, 2002; Buraga & Gabureanu, 2003)
 – based on ITL (Interval Temporal Logic)
ITW Web Agents

- Internal behavior modeled by BDI_CTL^K logic (Rao & Wooldridge, 1995, Wooldridge, 1996)
- Data serialization uses XML and SOAP (Alboiae & Buraga, 2003)
- Agent properties are specified by XML/RDF assertions (Buraga & Alboiae, 2005)
ITW Web Agents

- **ADF (Agent Development Framework)**
 - Second, more recent, open-source Java-based approach
 - Built as a Service-Oriented Architecture (SOA) to assure loose coupling between the interacting software agents
 - Agent communication is message-oriented and compatible with FIPA (Foundation for Intelligent Physical Agents) model
ITW User-Interface

- One CGI script that uses XUL (Extensible Markup Language)
 - provides a flexible query user-interface
- Queries are stored into WQFL (Web Query Formulating Language) format
 - denotes additional information about the search (e.g., relation with another resource, method of access, resource type, etc.) – see (Buraga & Rusu, 2000; Buraga & Brut, 2002)
ITW Actual Implementation

- 1 CGI script written in Perl language
 - generates XUL interface
- 2 ITW Web services
 - Linux (SOAP::Lite, Perl, Apache)
 - Windows (C#, .NET, IIS)
- 1 external Web service
 - provided by Google to discover world-wide resources
- ITW agents first implemented in C++ using Omega, then ADF (J2EE, under JBoss)
- 2 storage systems: MySQL (under Windows) and PostgreSQL (under Linux)
• Several tests were arranged for execution within an organizational intranet

• ITW can be viewed as a modular semantic Web-based open-source platform for discovering hypermedia information

• ITW uses different XML vocabularies in order to represent metadata and relations between Web resources
Further Work

- Instead of XUL, a set of XSL transformations can be applied
 - to offer a flexible interface for each Web client
- Storage system can use a native XML database system (e.g., eXist, Xindice,...)
- Deployment tests must be executed into a real life enterprise – following directions expressed by (Cioca & Buraga, 2003)
Summary

• Introduction
• ITW – Internal Architecture
 – General Presentation
 – ITW Web Agents
 – ITW Web Services
 – ITW User Interface
• ITW – Actual Implementation
• Further Work
Online Resources

- Agent Development Framework (ADF): http://adf.sourceforge.net/
- Foundation for Intelligent Physical Agents (FIPA): http://www.fipa.org/
- Semantic Web: http://www.semanticweb.org/
- Web Services: http://www.webservices.org/
- World-Wide Web Consortium: http://www.w3.org/

Thank you for your attention!