Linear, bilinear and quadratic forms

Lecture 8

Mathematics - 1st year, English

Faculty of Computer Science, UAIC

e-mail: adrian.zalinescu@gmail.com

web: https://profs.info.uaic.ro/~andreea.arusoae/mathematics_en.html

facebook: Adrian Zalinescu (group: FII - Matematica (2017-2018))

November 27, 2017
Outline of the lecture

1. Linear forms
2. Bilinear forms
3. Quadratic forms
Linear forms

Definition

Let \((V, +, \cdot)\) be a linear space.

- A linear mapping \(f : V \to \mathbb{R}\) is called a \textit{linear form} or a \textit{linear functional}.
- The linear space \(L(V; \mathbb{R})\) of all linear forms is called the \textit{dual} of \(V\) and is denoted \(V^*\).

Proposition

Let \((V, +, \cdot)\) be a finite-dimensional linear space. Then \(V^*\) is also finite-dimensional and \(\dim V^* = \dim V\).

Proposition

Let \((V, +, \cdot)\) be a finite-dimensional linear space. If \(v \in V \setminus \{0\}\) then there exists \(f \in V^*\) such that \(f(v) \neq 0\).

Consequence. If \(u, v \in V\) and \(u \neq v\) then there exists \(f \in V^*\) such that \(f(u) \neq f(v)\).
Bidual and evaluation map

Definition

Let \((V, +, \cdot)\) be a linear space.

- The dual of \(V^*\), denoted by \(V^{**}\), is called the **bidual** of \(V\).
- The function \(\psi: V \to V^{**}\) defined by

\[
\psi(v)(f) := f(v), \quad v \in V, \ f \in V^*
\]

is called the **evaluation map**.

The evaluation map is well-defined and it is linear:

1. It is clear that \(\psi(v): V^* \to \mathbb{R}\). If \(\alpha, \beta \in \mathbb{R}\) and \(f, g \in V^*\), then

\[
\psi(v)(\alpha f + \beta g) = (\alpha f + \beta g)(v) = \alpha f(v) + \beta g(v) = \alpha \psi(v)(f) + \beta \psi(v)(g).
\]

Hence \(\psi(v)\) is linear, i.e. \(\psi(v) \in V^{**}\). Therefore, \(\psi\) is well-defined.
2. If $\alpha, \beta \in \mathbb{R}$ and $u, v \in V$, then

$$
\psi(\alpha u + \beta v)(f) = f(\alpha u + \beta v) = \alpha f(u) + \beta f(v) = \alpha \psi(u)(f) + \beta \psi(v)(f), \quad \forall f \in V^*.
$$

This means that $\psi(\alpha u + \beta v) = \alpha \psi(u) + \beta \psi(v)$. In conclusion, ψ is linear.

3. If V is finite-dimensional, then ψ is a linear isomorphism.

- Indeed, if $v \in \ker \psi$, then

 $$
f(v) = 0, \quad \forall f \in V^*.
 $$

 Supposing that $v \neq 0_V$ would contradict the existence of some $f \in V^*$ such that $f(v) \neq 0$. Therefore, v should be equal to 0_V. This implies that $\ker \psi = \{0_V\}$, i.e. ψ is injective.

- On the other hand, $\dim V^{**} = \dim V^* = \dim V$. By the dimension theorem, $\rank \psi = \dim V = \dim V^{**}$, so ψ is surjective, too.

In conclusion, ψ is a linear isomorphism. In this case, ψ is also called the canonical isomorphism between V and V^{**}.
Vector hyperplanes

Definition

Let \((V, +, \cdot)\) be a linear space. A linear subspace \(W \subseteq V\) is called a (vector) hyperplane if there exists \(f \in V^* \setminus \{0_{V^*}\}\) such that \(\ker f = W\).

Proposition

If \((V, +, \cdot)\) is a finite-dimensional linear space with \(\dim V = n \in \mathbb{N}^*\), then a linear subspace \(W \subseteq V\) is a hyperplane if and only if \(\dim W = n - 1\).

Proof.

[Proof: “⇒”] If \(W = \ker f\) for some \(f \in V^* \setminus \{0_{V^*}\}\), then by the dimension theorem,

\[
\dim W = \dim(\ker f) = \dim V - \dim(\text{Im } f) = n - 1,
\]

because \(f \neq 0_{V^*}\) and thus \(\text{Im } f = \mathbb{R}\).
Proof.

[Proof: “⇐”] Conversely, if \(\dim W = n - 1 \), there exists a basis \(B = \{b_1, \ldots, b_{n-1}, b_n\} \) of \(V \) such that \(\text{Lin}\{b_1, \ldots, b_{n-1}\} = W \). Taking \(f : V \to \mathbb{R} \) defined by
\[
f(\alpha_1 b_1 + \cdots + \alpha_n b_n) := \alpha_n
\]
for \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \), we have \(f \neq 0_{V^*} \) and
\[
f(b_1) = \cdots = f(b_{n-1}) = 0,
\]
implying that \(W \subseteq \ker f \) (i.e., \(f(v) = 0, \forall v \in W \)). On the other hand, by the direct implication, \(\dim(\ker f) = n - 1 \) and consequently \(W = \ker f \). \qed
Let \(V \) be a finite-dimensional linear space and \(B = \{ b_1, \ldots, b_n \} \) a basis of \(V \).

- If \(W \) is a hyperplane with \(W = \ker f \), where \(f \in V^* \setminus \{ 0_{V^*} \} \), let
 \[\beta_1 := f(b_1), \ldots, \beta_n := f(b_n). \]
 Then \(v = x_1 b_1 + \cdots + x_n b_n \in \ker f \) is characterized by the equation
 \[
 \beta_1 x_1 + \cdots + \beta_n x_n = 0.
 \]
 Hence
 \[
 W = \left\{ x_1 b_1 + \cdots + x_n b_n \in V \mid \beta_1 x_1 + \cdots + \beta_n x_n = 0 \right\}.
 \]

- Conversely, having \(\beta_1, \ldots, \beta_n \in \mathbb{R} \), not all 0, the subset of \(V \) defined by the above relation is a hyperplane of \(V \).

- One can show that any linear subspace of \(V \) (not only hyperplanes) can be characterized by systems of equations of form (1).

- If \(V = \mathbb{R}^n \) and \(B \) is the canonical basis, relation (2) can be written as
 \[
 W = \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid \beta_1 x_1 + \cdots + \beta_n x_n = 0 \right\}.
 \]

- In the particular cases \(n = 2 \) and \(n = 3 \), equation (1) becomes the equation of a line, respectively a plane passing through the origin.
Affine functionals

The following notion allows us to characterize all the lines (when $n = 2$) and planes (when $n = 3$), not necessarily those passing through the origin.

Definition

Let $(V, +, ·)$ be a linear space. A function $f : V \rightarrow \mathbb{R}$ is called an **affine functional** if there exist a linear functional $f_0 \in V^*$ and a constant $c \in \mathbb{R}$ such that $f(v) = f_0(v) + c$, $\forall v \in V$.

For an affine functional $f : V \rightarrow \mathbb{R}$ one can define its *kernel* in the same way as for linear functionals, *i.e.* $\ker f := \{ v \in V \mid f(v) = 0 \}$.

Definition

Let $(V, +, ·)$ be a linear space. A subset $U \subseteq V$ is called an **affine hyperplane** if there exists a non-constant affine functional $f : V \rightarrow \mathbb{R}$ such that $\ker f = U$.

- In other words, U is affine hyperplane if there exist a vector hyperplane W and a vector $v_0 \in V$ such that

 $$U = W + v_0 := \{ v + v_0 \mid v \in W \}.$$
If V is finite-dimensional with a basis $B = \{b_1, b_2, \ldots, b_n\}$, then affine hyperplanes are given by subsets of the form

$$U = \{x_1b_1 + \cdots + x_nb_n \in V \mid \beta_1x_1 + \cdots + \beta_nx_n + c = 0\},$$

where $c, \beta_1, \ldots, \beta_n \in \mathbb{R}$.

In the cases $n = 2$ and $n = 3$, the affine hyperplanes are the lines, respectively the planes.
Bilinear forms

Definition

Let \((V, +, \cdot)\) and \((W, +, \cdot)\) two linear spaces. A function \(g : V \times W \rightarrow \mathbb{R}\) is called a bilinear form (bilinear map/mapping) on \(V \times W\) if the following conditions are fulfilled:

1. \(g(\alpha u + \beta v, w) = \alpha g(u, w) + \beta g(v, w), \forall \alpha, \beta \in \mathbb{R}, \forall u, v \in V, \forall w \in W;\)
2. \(g(v, \lambda w + \mu z) = \lambda g(v, w) + \mu g(v, z), \forall \lambda, \mu \in \mathbb{R}, \forall v \in V, \forall w, z \in W.\)

In the case \(W = V\), a bilinear form on \(V \times V\) is also called bilinear form (functional, map/mapping) on \(V\).

1. Suppose now that \(V\) and \(W\) are finite-dimensional, with bases \(B = \{b_1, \ldots, b_n\}\) and \(\bar{B} = \{\bar{b}_1, \ldots, \bar{b}_m\}\) on \(V\), respectively \(W\).

 If \(v \in V\) and \(w \in W\) having \(\alpha_1, \ldots, \alpha_n \in \mathbb{R}\) and \(\beta_1, \ldots, \beta_m \in \mathbb{R}\) as coordinates with respect to the bases \(B\), respectively \(\bar{B}\), then

 \[
g(v, w) = g \left(\sum_{i=1}^{n} \alpha_i b_i, \sum_{j=1}^{m} \beta_j \bar{b}_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j g(b_i, \bar{b}_j).\]
The scalars $a_{ij} := g(b_i, \bar{b}_j)$, $1 \leq i \leq n$, $1 \leq j \leq m$ are called the coefficients of the bilinear form g with respect to the bases B and \bar{B};

the matrix $A^g_{B,\bar{B}} := (a_{ij})_{1 \leq i \leq n}$ in \mathcal{M}_{nm} is called the matrix of the bilinear form g with respect to the bases B, \bar{B}.

2. If $B' = \{b'_1, \ldots, b'_n\}$ is another basis of V and $\bar{B}' = \{\bar{b}'_1, \ldots, \bar{b}'_m\}$ is another basis of W, let us denote $S = (s_{ij})_{1 \leq i, j \leq n} \in \mathcal{M}_n$ the transition matrix from B to B' and $\bar{S} = (\bar{s}_{ij})_{1 \leq i, j \leq m} \in \mathcal{M}_m$ the transition matrix from \bar{B} to \bar{B}'.

Then the matrix of g with respect to the bases B' and \bar{B}' can be written as

$$A^g_{B',\bar{B}'} = S \cdot A^g_{B,\bar{B}} \cdot \bar{S}^T.$$

It can be proven that $\text{rank} A^g_{B',\bar{B}'} = \text{rank} A^g_{B,\bar{B}}$, so the rank of the matrix of the bilinear form doesn't depend on the bases of reference. This common value is called the rank of g and is denoted by $\text{rank} g$.
Kernel of a bilinear form

- Fixing \(w \in W \), the bilinear form \(g : V \times W \to \mathbb{R} \) defines a linear functional \(f_w : V \to \mathbb{R} \), by
 \[
 f_w(v) := g(v, w), \quad v \in V.
 \]

Allowing now \(w \) to variate, the mapping \(w \mapsto f_w \) defines a linear operator \(g' : W \to V^* \).

- In a similar way, one can define a linear operator \(g'' : V \to W^* \) by
 \[
 g''(v) := h_v, \quad h_v \in W^*.
 \]
 where the linear functional \(h_v \in W^* \) is introduced by
 \[
 h_v(w) := g(v, w), \quad w \in V.
 \]

Definition

Let \(g : V \times W \to \mathbb{R} \) be a bilinear form and the associated linear operators
\(g' : W \to V^* \) and \(g'' : V \to W^* \) introduced above. The linear subspace
\(\ker g' \subseteq W \) is called the right kernel of \(g \), while the linear subspace \(\ker g'' \subseteq V \) is called
the left kernel of \(g \).

If \(\text{Ker}(g') = \{0_W\} \) and \(\text{Ker}(g'') = \{0_V\} \), then the bilinear form \(g \) is called
non-degenerate.
Definition

A bilinear form $g : V \times V \rightarrow \mathbb{R}$ is called *symmetric* if

$$g(u, v) = g(v, u), \forall u, v \in V,$$

respectively *antisymmetric* if

$$g(u, v) = -g(v, u), \forall u, v \in V.$$

Proposition

Let $g : V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form or an antisymmetric linear form. Then its right kernel coincides with its left kernel.

For such a bilinear form, the left kernel (which coincides with the right kernel) is called the *kernel* of g and is denoted by $\text{ker} \ g$.
Dimension theorem for bilinear forms

Proposition

Let \((V, +, \cdot)\) be a finite-dimensional linear space and \(g : V \times V \to \mathbb{R}\) a symmetric bilinear form. Then

\[
\text{rank } g + \dim (\ker g) = \dim V.
\]

Remark. By the above result, a necessary and sufficient condition for a symmetric bilinear form to be non-degenerate is that \(\text{rank } g = \dim V\).

Definition

Let \(g : V \times V \to \mathbb{R}\) be a symmetric bilinear form.

- Two vectors \(u, v \in V\) are called orthogonal with respect to \(g\) if \(g(u, v) = 0\).
- If \(U\) is a non-empty subset of \(V\), we say that \(U\) is orthogonal with respect to \(g\) (or \(g\)-orthogonal) if \(g(u, v) = 0\) for any distinct \(u, v \in U\).
- If \(U\) is a non-empty subset of \(V\), the set \(\{v \in V \mid g(u, v) = 0, \forall u \in U\}\) is a linear subspace of \(V\), called the orthogonal complement of \(U\) with respect to \(g\), denoted \(U^\perp_g\).
Sylvester’s law of inertia

Theorem

Let \((V, +, \cdot)\) be a finite-dimensional linear space and \(g : V \times V \to \mathbb{R}\) a symmetric bilinear form. If \(\{b_1, \ldots, b_n\}\) is a basis of \(V\) which is \(g\)-orthogonal, then \(\text{rank } g\) is precisely the number of elements among
\[g(b_1, b_1), g(b_2, b_2), \ldots, g(b_n, b_n)\] which are non-zero.

Theorem (Sylvester’s law of inertia)

Let \((V, +, \cdot)\) be a finite-dimensional linear space and \(g : V \times V \to \mathbb{R}\) a symmetric bilinear form. Then there exist \(p, q, r \in \mathbb{N}\) such that for every \(g\)-orthogonal basis \(\{b_1, \ldots, b_n\}\) of \(V\), \(p, q\) and \(r\) represent the number of positive, negative, respectively null elements among
\[g(b_1, b_1), g(b_2, b_2), \ldots, g(b_n, b_n)\].

- The numbers \(p\) and \(q\) are called the positive, respectively the negative index of inertia.
- The triple \((p, q, r)\) is called the signature of \(g\).
- Of course, \(p + q + r = n\) (\(n = \text{dim } V\)); moreover, \(\text{rank } g = p + q\).
Quadratic forms

Definition

Let $(V, +, \cdot)$ be a linear space and $g : V \times V \to \mathbb{R}$ a symmetric bilinear form. The function $h : V \to \mathbb{R}$, defined by

$$h(v) := g(v, v), \; v \in V$$

is called the quadratic form (functional) associated to g.

Remark. Since

$$h(u + v) = g(u + v, u + v) = g(u, u) + g(u, v) + g(v, u) + g(v, v)$$

and $g(u, v) = g(v, u)$, we have

$$h(u + v) = h(u) + 2g(u, v) + h(v), \; \forall u, v \in V.$$

From this formula we can retrieve g from h:

$$g(u, v) = \frac{1}{2} \left[h(u + v) - h(u) - h(v) \right], \; \forall u, v \in V$$

or

$$g(u, v) = \frac{1}{4} \left[h(u + v) - h(u - v) \right], \; \forall u, v \in V.$$
Suppose now that V is a finite-dimensional space and $B = \{b_1, \ldots, b_n\}$ is a basis of V.

Let $A^g_{B,B} = (a_{ij})_{1 \leq i, j \leq n}$ be the matrix of g with respect to B. If $x_1, \ldots, x_n \in \mathbb{R}$ are the coefficients of a vector $v \in V$ with respect to B, then

$$h(v) = h(x_1 b_1 + \cdots + x_n b_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j.$$

The right-hand side of this relation is a homogeneous polynomial of degree 2, called the \textit{quadratic polynomial} associated to the quadratic form h and the basis B.

The determinant of the symmetric matrix $A^g_{B,B}$ is called the \textit{discriminant} of h with respect to the basis B. Its sign does not depend on the basis B.

We say that h is a \textit{non-degenerate quadratic form} if g is a non-degenerate bilinear functional form, \textit{i.e.} the discriminant of h (in any basis) is not zero ($\text{rank } A^g_{B,B} = \text{rank } g = n$). Otherwise, we say that h is a \textit{degenerate quadratic form}.

If (p, q, r) is the signature of g, we also call it the \textit{signature} of the quadratic form h.

A. Zălinescu (Iași)
Lecture 8
November 27, 2017
Reduced form of a bilinear form

Definition

Let \((V, +, \cdot)\) be a finite-dimensional linear space and \(h : V \to V\) a quadratic form associated to some symmetric bilinear form \(g : V \times V \to \mathbb{R}\).

- If \(B\) is a basis of \(V\) such that the matrix of \(g\) is diagonal, we call **canonical (reduced) form** of \(h\) the quadratic polynomial associated to \(h\) and \(B\).
- A canonical form of \(h\) is called **normal** if the diagonal matrix associated to \(g\) has on its diagonal only the elements 1, \(-1\) and 0.

If \(B = \{b_1, \ldots, b_n\}\) is a basis of \(V\) giving a canonical form \(\omega_1 x_1^2 + \omega_2 x_2^2 + \cdots + \omega_n x_n^2\) of \(h\), then \(B' = \{c_1 b_1, \ldots, c_n b_n\}\) gives a normal form of \(h\), where \(c_i = 1\) if \(\omega_i = 0\), while \(c_i = \frac{1}{\sqrt{|\omega_i|}}\) if \(\omega_i \neq 0\), for \(1 \leq i \leq n\).
Theorem (Gauss method of reducing a quadratic form)

Let \((V, +, \cdot)\) be an \(n\)-dimensional linear space and \(h : V \to \mathbb{R}\) a quadratic form. Then there exists a basis \(\{b_1, \ldots, b_n\}\) of \(V\) and \(\omega_1, \ldots, \omega_n \in \mathbb{R}\) such that for any \(x_1, \ldots, x_n \in \mathbb{R}\) we have

\[
h(x_1 b_1 + \cdots + x_n b_n) = \omega_1 x_1^2 + \omega_2 x_2^2 + \cdots + \omega_n x_n^2.
\]

Remarks.

- The quadratic polynomial \(\omega_1 x_1^2 + \omega_2 x_2^2 + \cdots + \omega_n x_n^2\) is then a reduced form of \(h\) (the matrix of \(g\) with respect to \(\{b_1, \ldots, b_n\}\) is a diagonal matrix with entries \(\omega_1, \ldots, \omega_n\)).
- If \((p, q, r)\) is the signature of \(h\), then among the coefficients \(\omega_1, \ldots, \omega_n, p\) are positive, \(q\) are negative and \(r\) are equal to 0.
Jacobi method

Theorem (Jacobi method of reducing a quadratic form)

Let \((V, +, \cdot)\) be an \(n\)-dimensional linear space and \(h : V \to \mathbb{R}\) a quadratic form. Let \(\Delta_i, 1 \leq i \leq n\) the principal minors of the associated matrix \((a_{ij})_{1 \leq i, j \leq n}\) with respect to a basis of \(V\), i.e.

\[
\Delta_i = \begin{vmatrix}
 a_{11} & \cdots & a_{1i} \\
 a_{21} & \cdots & a_{2i} \\
 \vdots & \ddots & \vdots \\
 a_{i1} & \cdots & a_{ii}
\end{vmatrix}, \quad 1 \leq i \leq n.
\]

If \(\Delta_i \neq 0, \ \forall \ i \in \{1, \ldots, n\}\), then \(h\) can be reduced to the canonical form

\[
\mu_1 x_1^2 + \mu_2 x_2^2 + \cdots + \mu_n x_n^2,
\]

where \(\mu_j = \frac{\Delta_{j-1}}{\Delta_j}, \ \forall \ j = \{1, \ldots, n\}\), with \(\Delta_0 = 1\).
Definition

Let \((V, +, \cdot)\) be an \(n\)-dimensional linear space and \(h : V \to \mathbb{R}\) a quadratic form with signature \((p, q, r)\).

- If \(p = n\), \(h\) is called a \textit{positive-definite} quadratic form.
- If \(q = 0\), the quadratic form \(h\) is called \textit{positive semidefinite}.
- If \(q = n\), \(h\) is called a \textit{negative-definite} quadratic form.
- If \(p = 0\), the quadratic form \(h\) is called \textit{negative semidefinite}.
- The quadratic form \(h\) is called \textit{undefined} if \(p > 0\) and \(q > 0\).

Let \(\Delta_i, 1 \leq i \leq n\) be the principal minors of the associated matrix with respect to an arbitrary basis. Then \(h\) is positive-definite if and only if

\[\Delta_i > 0, \quad \forall i \in \{1, \ldots, n\}\]

and \(h\) is negative-definite if and only if

\[(-1)^i \Delta_i > 0, \quad \forall i \in \{1, \ldots, n\}\].
Theorem (Eigenvalues method of reducing a quadratic form)

Let \((V, \langle \cdot, \cdot \rangle)\) be a finite-dimensional prehilbertian space with \(\text{dim } V = n\). Then there exists an orthonormal basis with respect to which \(h\) has the canonical form

\[
\lambda_1 x_1^2 + \lambda_2 x_2^2 + \cdots + \lambda_n x_n^2, \ x_1, x_2, \ldots, x_n \in \mathbb{R},
\]

where \(\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}\).

- In fact, \(\lambda_1, \ldots, \lambda_n\) are the eigenvalues of the associated matrix with respect to any basis of \(V\).
- The method of the proof is similar to the diagonalization algorithm for linear operators.
Non-homogeneous quadratic functionals

Definition

Let \((V, +, \cdot)\) be a linear space, \(h : V \to \mathbb{R}\) a quadratic form and \(f : V \to \mathbb{R}\) an affine functional. The sum \(h + f\) is called a **non-homogeneous quadratic functional** on \(V\).

- If \(V\) is finite-dimensional and \(B = \{b_1, \ldots, b_n\}\) of basis of \(V\), then for any \(x_1, \ldots, x_n \in \mathbb{R}\)

\[
(h + f)(x_1 b_1 + \cdots + x_n b_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i + c,
\]

where \(A = (a_{ij})_{1 \leq i, j \leq n}\) is the matrix associated to \(h\) and \(b_1, \ldots, b_n, c \in \mathbb{R}\).

- The right-hand side of this equality is called the **quadratic polynomial** associated to \(h + f\) (which is a polynomial of degree 2).

- If \(V = \mathbb{R}^n\) and \(B\) is its canonical basis, then (3) can be written as

\[
(h + f)(x) = \rho(x) := \langle Ax, x \rangle + \langle b, x \rangle + c, \quad \forall x \in \mathbb{R}^n,
\]

where \(b = (b_1, b_2, \ldots, b_n) \in \mathbb{R}^n\) and the vectors \(x \in \mathbb{R}^n\) are interpreted as column matrices.
Conversely, for arbitrary symmetric matrix $A \in \mathcal{M}_n$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$, the function $\rho : V \to \mathbb{R}$ defined by (4), i.e.

$$\rho(x) := \langle Ax, x \rangle + \langle b, x \rangle + c, \quad \forall x \in \mathbb{R}^n$$

defines a non-homogeneous quadratic functional on V.

Moreover, A can be taken not necessarily symmetric, since

$$\langle Ax, x \rangle = \frac{1}{2} \langle Ax, x \rangle + \frac{1}{2} \langle x, Ax \rangle$$

$$= \frac{1}{2} \langle Ax, x \rangle + \frac{1}{2} \langle A^T x, x \rangle = \left\langle \frac{1}{2} (A + A^T) x, x \right\rangle,$$

so the matrix A can be replaced by the symmetric matrix $\frac{1}{2} (A + A^T)$.

Normal form of non-homogeneous quadratic functionals

Let us now consider an affine change of coordinates, i.e. a transformation of the form

\[x' = Sx + x_0, \]

where \(S \in \mathbb{M}_n \) is a non-singular matrix and \(x_0 \in \mathbb{R}^n \). Then

\[
\rho(x) = \langle AS^{-1}(x' - x_0), S^{-1}(x' - x_0) \rangle + \langle b, S^{-1}(x' - x_0) \rangle + c
\]

\[= \left\langle \left(S^{-1}\right)^T AS^{-1}x', x'\right\rangle - \left\langle 2 \left(S^{-1}\right)^T AS^{-1}x_0 + \left(S^{-1}\right)^T b, x'\right\rangle + \left(c - \left\langle b, S^{-1}x_0 \right\rangle \right) . \]

Suppose now that \(S \) is the transition matrix from the canonical basis to an orthonormal basis giving the canonical form in eigenvalues method of reduction. Therefore, \(S \) is an orthonormal matrix (\(S^{-1} = S^T \)) and

\[SAS^T = D := \text{diag}(\lambda_1, \ldots, \lambda_n) \], where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \).

Consequently, we have:

\[
\rho(x) = \langle Dx', x' \rangle - 2 \left\langle S \left(AS^T x_0 + \frac{1}{2}b\right), x' \right\rangle + \left(c - \left\langle b, S^{-1}x_0 \right\rangle \right) . \]
If A is non-singular, we can take $x_0 := -\frac{1}{2}SA^{-1}b$, obtaining

$$\rho(x) = \langle Dx', x' \rangle + c_0,$$

where $c_0 := \langle Dx_0, x_0 \rangle - \langle Sb, x_0 \rangle + c$. Therefore, by the change of coordinates $x' = Sx - \frac{1}{2}SA^{-1}b$, we obtain

$$\rho(x) = \sum_{i=1}^{n} \lambda_i (x'_i)^2 + c_0, \quad \forall x \in \mathbb{R}^n,$$

where x'_i are the coordinates of x with respect to the new orthogonal basis.

If $\det A = 0$, then by letting $x_0 := 0$, we obtain

$$\rho(x) = \langle Dx', x' \rangle + \langle Sb, x' \rangle + c_0,$$

where $c_0 := -\langle Sb, x_0 \rangle + c$.

If (p, q, r) is the signature of h, we have $r > 0$ and $n - r$ is the rank of A; one can further find an adequate basis B'' such that

$$\rho(x) = \sum_{i=1}^{n-r} \lambda_i(x''_i)^2 + \gamma x''_{n-r+1},$$

where x''_1, \ldots, x''_n are the coordinates of x with respect to this new basis and $\gamma \in \mathbb{R}$.
Geometric classification

From the geometric point of view,

$$\ker \rho := \{ x \in \mathbb{R}^n \mid \rho(x) = 0 \}$$

is a conic in the case $n = 2$, a quadric if $n = 3$, a hyperquadric if $n \geq 4$.

1. Case $n = 1$: the normal forms of ρ are:

 - $x^2 + 1$ (ker $\rho = \emptyset$: two “imaginary” points);
 - $x^2 - 1$ (ker $\rho = \{-1, 1\}$: two distinct points);
 - x^2 (ker $\rho = \{0\}$: two identical points).
2. Case $n = 2$: we have nine types of conics, according to the normal form of ρ:

- $x_1^2 + x_2^2 + 1 = 0$ (\(\emptyset\): “imaginary” ellipse);
- $x_1^2 - x_2^2 + 1 = 0$ (hyperbola);
- $x_1^2 + x_2^2 - 1 = 0$ (ellipse);
- $x_1^2 - 2x_2 = 0$ (parabola);
- $x_1^2 + x_2^2 = 0$ (a point: two “imaginary”, conjugate lines);
- $x_1^2 - x_2^2 = 0$ (two intersecting lines);
- $x_1^2 + 1 = 0$ (\(\emptyset\): two “imaginary” lines);
- $x_1^2 - 1 = 0$ (two parallel lines);
- $x_1^2 = 0$ (two identical lines).
1. Single point
2. Single line
3. Pair of lines
4. Parabola
5. Ellipse
6. Hyperbola
3. Case $n = 3$: we have 17 types of quadrics, characterized by the following normal forms:

- $x_1^2 + x_2^2 + x_3^2 + 1 = 0$ ("imaginary" ellipsoid);
- $x_1^2 + x_2^2 + x_3^2 - 1 = 0$ (ellipsoid);
- $x_1^2 + x_2^2 - x_3^2 - 1 = 0$ (hyperboloid of one sheet);
- $x_1^2 - x_2^2 - x_3^2 - 1 = 0$ (hyperboloid of two sheets);
- $x_1^2 + x_2^2 + x_3^2 = 0$ (a point: "imaginary" cone);
- $x_1^2 + x_2^2 - x_3^2 = 0$ (cone);
- $x_1^2 + x_2^2 - 2x_3 = 0$ (elliptic paraboloid);
- $x_1^2 - x_2^2 - 2x_3 = 0$ (hyperbolic paraboloid).

The remaining 9 normal forms are the same as those in the case $n = 2$, which in \mathbb{R}^3 represent cylinders of different types: elliptic, hyperbolic or parabolic. The first 6 quadrics are non-singular quadrics, while the others are singular quadrics.
Graphs of quadric surfaces

<table>
<thead>
<tr>
<th>Surface</th>
<th>Equation</th>
<th>Surface</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipsoid</td>
<td>[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1]</td>
<td>Cone</td>
<td>[\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}]</td>
</tr>
<tr>
<td></td>
<td>All traces are ellipses.</td>
<td></td>
<td>Horizontal traces are ellipses.</td>
</tr>
<tr>
<td></td>
<td>If (a = b = c), the ellipsoid is a sphere.</td>
<td></td>
<td>Vertical traces in the planes (x = k) and (y = k) are</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hyperbolas if (k \neq 0) but are</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pairs of lines if (k = 0).</td>
</tr>
<tr>
<td>Elliptic Paraboloid</td>
<td>[\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}]</td>
<td>Hyperboloid of One Sheet</td>
<td>[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1]</td>
</tr>
<tr>
<td></td>
<td>Horizontal traces are ellipses.</td>
<td></td>
<td>Horizontal traces are ellipses.</td>
</tr>
<tr>
<td></td>
<td>Vertical traces are parabolas.</td>
<td></td>
<td>Vertical traces are hyperbolas.</td>
</tr>
<tr>
<td></td>
<td>The variable raised to the first power indicates the axis of the</td>
<td></td>
<td>The axis of symmetry corresponds to the variable whose coefficient is</td>
</tr>
<tr>
<td></td>
<td>paraboloid.</td>
<td></td>
<td>negative.</td>
</tr>
<tr>
<td>Hyperbolic Paraboloid</td>
<td>[\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}]</td>
<td>Hyperboloid of Two Sheets</td>
<td>[-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1]</td>
</tr>
<tr>
<td></td>
<td>Horizontal traces are hyperbolas.</td>
<td></td>
<td>Horizontal traces in (z = k) are</td>
</tr>
<tr>
<td></td>
<td>Vertical traces are parabolas.</td>
<td></td>
<td>ellipses if (k > c) or (k < -c).</td>
</tr>
<tr>
<td></td>
<td>The case where (c < 0) is illustrated.</td>
<td></td>
<td>Vertical traces are hyperbolas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The two minus signs indicate two sheets.</td>
</tr>
</tbody>
</table>

