ABOUT SOME FUNCTIONAL INTEGRAL EQUATIONS IN SPACES WITH PERTURBATED METRIC

Ion-Marian Olaru, Vasilica Olaru

University "Lucian Blaga" of Sibiu, High School "Gustav Gundish", Sibiu

Abstract In spaces with perturbated metric the following functional integral equation

$$u(x) = h(x, u(0)) + \int_{0}^{x_1} \cdots \int_{0}^{x_m} K(x, s, u(\theta_1 s, \dots, \theta_m s)) ds,$$
 (1)

where

$$x, s \in D = \prod_{i=1}^{m} [0, b_i], \ m(D) \le 1, \ \theta_i \in (0, 1), (\forall) i = \overline{1, m}$$

is studied.

Keywords: fixed point, weakly Picard operators.

2000 MSC: 47K10.

1. INTRODUCTION

Let (X, d) be a metric space and $A: X \to X$ an operator. We shall use the following notations

 $F_A := \{x \in X \mid A(x) = x\}$ the fixed points set of A;

 $I(A) := \{Y \in P(X) \mid A(Y) \subset Y\}$ the family of the nonempty invariant subsets of A;

$$A^{n+1} = A \circ A^n, A^0 = 1_X, A^1 = A, n \in N.$$

Definition 1.1. [4] An operator A is an weakly Picard operator (WPO) if the sequence

$$(A^n(x))_{n\in\mathbb{N}}$$

converges for all $x \in X$, and the limit (which depends on x) is a fixed point of A.

Definition 1.2. [4] If the operator A is WPO and $F_A = \{x^*\}$ then A is called a Picard operator.

Definition 1.3. [4] If A is an WPO, then we define the operator

$$A^{\infty}: X \to X, A^{\infty}(x) = \lim_{n \to \infty} A^n(x).$$

We remark that $A^{\infty}(X) = F_A$.

Definition 1.4. [4] Let be A an WPO and c > 0. The operator A is called a c-WPO if

$$d(x, A^{\infty}(x)) \le c \cdot d(x, A(x)).$$

We have the following characterization of the WPOs

Theorem 1.1. [4] Let (X,d) be a metric space and $A: X \to X$ an operator. The operator A is an WPO (c-WPO) if and only if there exists a partition of X,

$$X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$$

such that

- (a) $X_{\lambda} \in I(A)$,
- (b) $A \mid X_{\lambda} : X_{\lambda} \to X_{\lambda}$ is a Picard (c-Picard) operator, for all $\lambda \in \Lambda$.

2. MAIN RESULTS

Let (X, d) be a complete metric space. We denote by P the set of functions $g : \mathbb{R}_+ \to \mathbb{R}_+$ which are strictly increasing, continuous and surjective. By Φ we denote the set of functions introduced by

Definition 2.1. We say that the function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to the Φ class if the following conditions are met:

- (1) φ is increasing;
- (2) $\varphi(t) < t$, for all $t \in \mathbb{R}_+$;
- (3) φ is right continuous.

Example 2.1. The function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi(t) = at$, a < 1 belongs to the set Φ .

Example 2.2. The function $g: \mathbb{R}_+ \to \mathbb{R}_+$, $g(t) = t^2$, belongs to the set P.

Proposition 2.1. [3] Let $f: X \to X$ be an operator and $\varphi \in \Phi$, $g \in P$ such that:

(i)
$$g(d(f(x), f(y))) \le \varphi(g(d(x, y)))$$
, for all $x, y \in X$.

Then f has a unique fixed point, which is the limit of successively approximations sequence.

Proposition 2.2. We suppose that:

(i)
$$h \in C(D \times \mathbb{R}^n)$$
 and $K \in C(D \times D \times \mathbb{R}^n)$;

(ii)
$$h(0,\alpha) = \alpha$$
, $(\forall)\alpha \in \mathbb{R}^n$;

(iii) there exists $g \in P$, $\varphi \in \Phi$ such that

$$g(\|K(x, s, u_1) - K(x, s, u_2)\|_{\mathbb{R}^n}) \le \varphi(g(\|u_1 - u_2\|_{\mathbb{R}^n})),$$

for all $x, s \in D$ and $u_1, u_2 \in \mathbb{R}^n$.

In these conditions the equation(1) has in $C(D,\mathbb{R})$ an infinity of solutions.

Proof: Consider the operator

$$A: (C(D, \mathbb{R}^n), |\cdot|) \to (C(D, \mathbb{R}^n), |\cdot|),$$

$$A(u)(x) := h(x, u(0)) + \int_0^{x_1} \cdots \int_0^{x_m} K(x, s, u(\theta_1 s, \cdots, \theta_m s)) ds.$$

Here $|u|=\max_{x\in D}|u(x)|$. Let $\lambda\in\mathbb{R}^n$ and $X_\lambda=\{u\in C(D,\mathbb{R}^n)\mid u(0)=\lambda\}$. Then

$$C(D, \mathbb{R}^n) = \bigcup_{\lambda \in \mathbb{R}^n} X_{\lambda}.$$

is a partition of $C(D, \mathbb{R}^n)$ and $X_{\lambda} \in I(A)$, for all $\lambda \in \mathbb{R}^n$.

For all $u, v \in X_{\lambda}$, we have

$$g(\|A(u)(x) - A(v)(x)\|_{\mathbb{R}^n}) \le$$

$$g(\int_{0}^{x_1} \cdots \int_{0}^{x_m} g^{-1}(\varphi(g(\|K(x, s, u(\theta_1 s, \cdots, \theta_m s) - K(x, s, v(\theta_1 s, \cdots, \theta_m s))\|))))))ds$$

$$\leq g(m(D)g^{-1}\varphi(g(\|u - v\|))) \leq \varphi(g(\|u - v\|))$$

Then, via Proposition 2.1, $A \mid X_{\lambda}$ is a Picard, while A is an weakly Picard operator.

References

- [1] P. Corazza, Introduction to metric-preserving function, Amer. Math. Monthly, 104, 4 (1999), 309-323.
- [2] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1984), 1.
- [3] I.-M. Olaru, A fixed point result in spaces with perturbated metric, (to appear) .
- [4] I. A. Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, 2 (2001), 41-57.
- [5] I. A. Rus, Generalized contractions, Seminar on fixed point theory, 3 (1983), 1-130.
- [6] M.-A. Şerban, Spaces with perturbated metrics and fixed point theorems, the Twelfth International Conference on Applied Mathematics, Computer Science and Mechanics, Băişoara, Semptember 10-13, 2008.